Classical And Fuzzy Concepts In Mathematical Logic And Applications Professional Version

Download Classical And Fuzzy Concepts In Mathematical Logic And Applications Professional Version PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Classical And Fuzzy Concepts In Mathematical Logic And Applications Professional Version book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Classical and Fuzzy Concepts in Mathematical Logic and Applications, Professional Version

Classical and Fuzzy Concepts in Mathematical Logic and Applications provides a broad, thorough coverage of the fundamentals of two-valued logic, multivalued logic, and fuzzy logic. Exploring the parallels between classical and fuzzy mathematical logic, the book examines the use of logic in computer science, addresses questions in automatic deduction, and describes efficient computer implementation of proof techniques. Specific issues discussed include: Propositional and predicate logic Logic networks Logic programming Proof of correctness Semantics Syntax Completenesss Non-contradiction Theorems of Herbrand and Kalman The authors consider that the teaching of logic for computer science is biased by the absence of motivations, comments, relevant and convincing examples, graphic aids, and the use of color to distinguish language and metalanguage. Classical and Fuzzy Concepts in Mathematical Logic and Applications discusses how the presence of these facts trigger a stirring, decisive insight into the understanding process. This view shapes this work, reflecting the authors' subjective balance between the scientific and pedagogic components of the textbook. Usually, problems in logic lack relevance, creating a gap between classroom learning and applications to real-life problems. The book includes a variety of application-oriented problems at the end of almost every section, including programming problems in PROLOG III. With the possibility of carrying out proofs with PROLOG III and other software packages, readers will gain a first-hand experience and thus a deeper understanding of the idea of formal proof.
Classical and Fuzzy Concepts in Mathematical Logic and Applications, Professional Version

Classical and Fuzzy Concepts in Mathematical Logic and Applications provides a broad, thorough coverage of the fundamentals of two-valued logic, multivalued logic, and fuzzy logic. Exploring the parallels between classical and fuzzy mathematical logic, the book examines the use of logic in computer science, addresses questions in automatic deduction, and describes efficient computer implementation of proof techniques. Specific issues discussed include: Propositional and predicate logic Logic networks Logic programming Proof of correctness Semantics Syntax Completenesss Non-contradiction Theorems of Herbrand and Kalman The authors consider that the teaching of logic for computer science is biased by the absence of motivations, comments, relevant and convincing examples, graphic aids, and the use of color to distinguish language and metalanguage. Classical and Fuzzy Concepts in Mathematical Logic and Applications discusses how the presence of these facts trigger a stirring, decisive insight into the understanding process. This view shapes this work, reflecting the authors' subjective balance between the scientific and pedagogic components of the textbook. Usually, problems in logic lack relevance, creating a gap between classroom learning and applications to real-life problems. The book includes a variety of application-oriented problems at the end of almost every section, including programming problems in PROLOG III. With the possibility of carrying out proofs with PROLOG III and other software packages, readers will gain a first-hand experience and thus a deeper understanding of the idea of formal proof.
Fuzzy Sets, Fuzzy Logic, Applications

Fuzzy sets and fuzzy logic are powerful mathematical tools for modeling and controlling uncertain systems in industry, humanity, and nature; they are facilitators for approximate reasoning in decision making in the absence of complete and precise information. Their role is significant when applied to complex phenomena not easily described by traditional mathematics.The unique feature of the book is twofold: 1) It is the first introductory course (with examples and exercises) which brings in a systematic way fuzzy sets and fuzzy logic into the educational university and college system. 2) It is designed to serve as a basic text for introducing engineers and scientists from various fields to the theory of fuzzy sets and fuzzy logic, thus enabling them to initiate projects and make applications.