Charge Transport In Disordered Solids With Applications In Electronics

Download Charge Transport In Disordered Solids With Applications In Electronics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Charge Transport In Disordered Solids With Applications In Electronics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Charge Transport in Disordered Solids with Applications in Electronics

Author: Sergei Baranovski
language: en
Publisher: John Wiley & Sons
Release Date: 2006-08-14
The field of charge conduction in disordered materials is a rapidly evolving area owing to current and potential applications of these materials in various electronic devices This text aims to cover conduction in disordered solids from fundamental physical principles and theories, through practical material development with an emphasis on applications in all areas of electronic materials. International group of contributors Presents basic physical concepts developed in this field in recent years in a uniform manner Brings up-to-date, in a one-stop source, a key evolving area in the field of electronic materials
Energy Transfer Dynamics in Biomaterial Systems

Author: Irene Burghardt
language: en
Publisher: Springer Science & Business Media
Release Date: 2009-09-22
The role of quantum coherence in promoting the e ciency of the initial stages of photosynthesis is an open and intriguing question. Lee, Cheng, and Fleming, Science 316, 1462 (2007) The understanding and design of functional biomaterials is one of today’s grand challenge areas that has sparked an intense exchange between biology, materials sciences, electronics, and various other disciplines. Many new - velopments are underway in organic photovoltaics, molecular electronics, and biomimetic research involving, e. g. , arti cal light-harvesting systems inspired by photosynthesis, along with a host of other concepts and device applications. In fact, materials scientists may well be advised to take advantage of Nature’s 3. 8 billion year head-start in designing new materials for light-harvesting and electro-optical applications. Since many of these developments reach into the molecular domain, the - derstanding of nano-structured functional materials equally necessitates f- damental aspects of molecular physics, chemistry, and biology. The elementary energy and charge transfer processes bear much similarity to the molecular phenomena that have been revealed in unprecedented detail by ultrafast op- cal spectroscopies. Indeed, these spectroscopies, which were initially developed and applied for the study of small molecular species, have already evolved into an invaluable tool to monitor ultrafast dynamics in complex biological and materials systems. The molecular-level phenomena in question are often of intrinsically quantum mechanical character, and involve tunneling, non-Born- Oppenheimer e ects, and quantum-mechanical phase coherence.
Electronic Processes in Organic Semiconductors

The first advanced textbook to provide a useful introduction in a brief, coherent and comprehensive way, with a focus on the fundamentals. After having read this book, students will be prepared to understand any of the many multi-authored books available in this field that discuss a particular aspect in more detail, and should also benefit from any of the textbooks in photochemistry or spectroscopy that concentrate on a particular mechanism. Based on a successful and well-proven lecture course given by one of the authors for many years, the book is clearly structured into four sections: electronic structure of organic semiconductors, charged and excited states in organic semiconductors, electronic and optical properties of organic semiconductors, and fundamentals of organic semiconductor devices.