Characters And Blocks Of Solvable Groups

Download Characters And Blocks Of Solvable Groups PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Characters And Blocks Of Solvable Groups book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Characters and Blocks of Solvable Groups

This book highlights recent developments in the representation theory of finite solvable groups, which seeks to connect group theory to linear algebra in ways that allow for better study of the groups in question. Over the last several decades, a number of results in the representations of solvable groups have been proven using so-called “large orbit” theorems. This book provides an extensive survey of the current state of the large-orbit theorems. The authors outline the proofs of the large orbit theorems to provide an overview of the topic, then demonstrate how these theorems can be used to prove new results about solvable groups.
Characters of Solvable Groups

Author: I. Martin Isaacs
language: en
Publisher: American Mathematical Soc.
Release Date: 2018-05-23
This book, which can be considered as a sequel of the author's famous book Character Theory of Finite Groups, concerns the character theory of finite solvable groups and other groups that have an abundance of normal subgroups. It is subdivided into three parts: -theory, character correspondences, and M-groups. The -theory section contains an exposition of D. Gajendragadkar's -special characters, and it includes various extensions, generalizations, and applications of his work. The character correspondences section proves the McKay character counting conjecture and the Alperin weight conjecture for solvable groups, and it constructs a canonical McKay bijection for odd-order groups. In addition to a review of some basic material on M-groups, the third section contains an exposition of the use of symplectic modules for studying M-groups. In particular, an accessible presentation of E. C. Dade's deep results on monomial characters of odd prime-power degree is included. Very little of this material has previously appeared in book form, and much of it is based on the author's research. By reading a clean and accessible presentation written by the leading expert in the field, researchers and graduate students will be inspired to learn and work in this area that has fascinated the author for decades.
Characters and Blocks of Finite Groups

Author: Gabriel Navarro
language: en
Publisher: Cambridge University Press
Release Date: 1998-05-07
This is a clear, accessible and up-to-date exposition of modular representation theory of finite groups from a character-theoretic viewpoint. After a short review of the necessary background material, the early chapters introduce Brauer characters and blocks and develop their basic properties. The next three chapters study and prove Brauer's first, second and third main theorems in turn. These results are then applied to prove a major application of finite groups, the Glauberman Z*-theorem. Later chapters examine Brauer characters in more detail. The relationship between blocks and normal subgroups is also explored and the modular characters and blocks in p-solvable groups are discussed. Finally, the character theory of groups with a Sylow p-subgroup of order p is studied. Each chapter concludes with a set of problems. The book is aimed at graduate students, with some previous knowledge of ordinary character theory, and researchers studying the representation theory of finite groups.