Chaotic Dynamics Of Fractional Discrete Time Systems


Download Chaotic Dynamics Of Fractional Discrete Time Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Chaotic Dynamics Of Fractional Discrete Time Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Chaotic Dynamics of Fractional Discrete Time Systems


Chaotic Dynamics of Fractional Discrete Time Systems

Author: Vignesh Dhakshinamoorthy

language: en

Publisher: CRC Press

Release Date: 2024-09-06


DOWNLOAD





The book reviews the application of discrete fractional operators in diverse fields such as biological and chemical reactions, as well as chaotic systems, demonstrating their applications in physics. The dynamical analysis is carried out using equilibrium points of the system for studying their stability properties and the chaotic behaviors are illustrated with the help of bifurcation diagrams and Lyapunov exponents. The book is divided into three parts. Part I deals with the application of discrete fractional operators in chemical reaction-based systems with biological significance. Two different chemical reaction models are analysed- one being disproportionation of glucose, which plays an important role in human physiology and the other is the Lengyel – Epstein chemical model. Chaotic behavior of the systems is studied and the synchronization of the system is performed. Part II covers the analysis of biological systems like tumor immune system and neuronal models by introducing memristor based flux control. The memductance functions are considered as quadratic, periodic, and exponential functions. The final part of the book reviews the complex form of the Rabinovich-Fabrikant system which describes physical systems with strong nonlinearity exhibiting unusual behavior.

Fractional Discrete Chaos: Theories, Methods And Applications


Fractional Discrete Chaos: Theories, Methods And Applications

Author: Adel Ouannas

language: en

Publisher: World Scientific

Release Date: 2023-02-13


DOWNLOAD





In the nineteenth-century, fractional calculus had its origin in extending differentiation and integration operators from the integer-order case to the fractional-order case. Discrete fractional calculus has recently become an important research topic, useful in various science and engineering applications. The first definition of the fractional-order discrete-time/difference operator was introduced in 1974 by Diaz and Osler, where such operator was derived by discretizing the fractional-order continuous-time operator. Successfully, several types of fractional-order difference operators have then been proposed and introduced through further generalizing numerous classical operators, motivating several researchers to publish extensively on a new class of systems, viz the nonlinear fractional-order discrete-time systems (or simply, the fractional-order maps), and their chaotic behaviors. This discovery of chaos in such maps, has led to novel control methods for effectively stabilizing their chaotic dynamics.The aims of this book are as follows:

Fractional Order Control and Synchronization of Chaotic Systems


Fractional Order Control and Synchronization of Chaotic Systems

Author: Ahmad Taher Azar

language: en

Publisher: Springer

Release Date: 2017-02-27


DOWNLOAD





The book reports on the latest advances in and applications of fractional order control and synchronization of chaotic systems, explaining the concepts involved in a clear, matter-of-fact style. It consists of 30 original contributions written by eminent scientists and active researchers in the field that address theories, methods and applications in a number of research areas related to fractional order control and synchronization of chaotic systems, such as: fractional chaotic systems, hyperchaotic systems, complex systems, fractional order discrete chaotic systems, chaos control, chaos synchronization, jerk circuits, fractional chaotic systems with hidden attractors, neural network, fuzzy logic controllers, behavioral modeling, robust and adaptive control, sliding mode control, different types of synchronization, circuit realization of chaotic systems, etc. In addition to providing readers extensive information on chaos fundamentals, fractional calculus, fractional differential equations, fractional control and stability, the book also discusses key applications of fractional order chaotic systems, as well as multidisciplinary solutions developed via control modeling. As such, it offers the perfect reference guide for graduate students, researchers and practitioners in the areas of fractional order control systems and fractional order chaotic systems.