Causal Inference In Econometrics

Download Causal Inference In Econometrics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Causal Inference In Econometrics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Causal Inference

Author: Scott Cunningham
language: en
Publisher: Yale University Press
Release Date: 2021-01-26
An accessible, contemporary introduction to the methods for determining cause and effect in the Social Sciences “Causation versus correlation has been the basis of arguments—economic and otherwise—since the beginning of time. Causal Inference: The Mixtape uses legit real-world examples that I found genuinely thought-provoking. It’s rare that a book prompts readers to expand their outlook; this one did for me.”—Marvin Young (Young MC) Causal inference encompasses the tools that allow social scientists to determine what causes what. In a messy world, causal inference is what helps establish the causes and effects of the actions being studied—for example, the impact (or lack thereof) of increases in the minimum wage on employment, the effects of early childhood education on incarceration later in life, or the influence on economic growth of introducing malaria nets in developing regions. Scott Cunningham introduces students and practitioners to the methods necessary to arrive at meaningful answers to the questions of causation, using a range of modeling techniques and coding instructions for both the R and the Stata programming languages.
The Philosophy of Causality in Economics

Approximately one in six top economic research papers draws an explicitly causal conclusion. But what do economists mean when they conclude that A ‘causes’ B? Does ‘cause’ say that we can influence B by intervening on A, or is it only a label for the correlation of variables? Do quantitative analyses of observational data followed by such causal inferences constitute sufficient grounds for guiding economic policymaking? The Philosophy of Causality in Economics addresses these questions by analyzing the meaning of causal claims made by economists and the philosophical presuppositions underlying the research methods used. The book considers five key causal approaches: the regularity approach, probabilistic theories, counterfactual theories, mechanisms, and interventions and manipulability. Each chapter opens with a summary of literature on the relevant approach and discusses its reception among economists. The text details case studies, and goes on to examine papers which have adopted the approach in order to highlight the methods of causal inference used in contemporary economics. It analyzes the meaning of the causal claim put forward, and finally reconstructs the philosophical presuppositions accepted implicitly by economists. The strengths and limitations of each method of causal inference are also considered in the context of using the results as evidence for policymaking. This book is essential reading to those interested in literature on the philosophy of economics, as well as the philosophy of causality and economic methodology in general.
Causal Inference in Econometrics

This book is devoted to the analysis of causal inference which is one of the most difficult tasks in data analysis: when two phenomena are observed to be related, it is often difficult to decide whether one of them causally influences the other one, or whether these two phenomena have a common cause. This analysis is the main focus of this volume. To get a good understanding of the causal inference, it is important to have models of economic phenomena which are as accurate as possible. Because of this need, this volume also contains papers that use non-traditional economic models, such as fuzzy models and models obtained by using neural networks and data mining techniques. It also contains papers that apply different econometric models to analyze real-life economic dependencies.