Carleman Estimates And Applications To Inverse Problems For Hyperbolic Systems

Download Carleman Estimates And Applications To Inverse Problems For Hyperbolic Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Carleman Estimates And Applications To Inverse Problems For Hyperbolic Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems

This book is a self-contained account of the method based on Carleman estimates for inverse problems of determining spatially varying functions of differential equations of the hyperbolic type by non-overdetermining data of solutions. The formulation is different from that of Dirichlet-to-Neumann maps and can often prove the global uniqueness and Lipschitz stability even with a single measurement. These types of inverse problems include coefficient inverse problems of determining physical parameters in inhomogeneous media that appear in many applications related to electromagnetism, elasticity, and related phenomena. Although the methodology was created in 1981 by Bukhgeim and Klibanov, its comprehensive development has been accomplished only recently. In spite of the wide applicability of the method, there are few monographs focusing on combined accounts of Carleman estimates and applications to inverse problems. The aim in this book is to fill that gap. The basic tool is Carleman estimates, the theory of which has been established within a very general framework, so that the method using Carleman estimates for inverse problems is misunderstood as being very difficult. The main purpose of the book is to provide an accessible approach to the methodology. To accomplish that goal, the authors include a direct derivation of Carleman estimates, the derivation being based essentially on elementary calculus working flexibly for various equations. Because the inverse problem depends heavily on respective equations, too general and abstract an approach may not be balanced. Thus a direct and concrete means was chosen not only because it is friendly to readers but also is much more relevant. By practical necessity, there is surely a wide range of inverse problems and the method delineated here can solve them. The intention is for readers to learn that method and then apply it to solving new inverse problems.
Inverse Problems and Carleman Estimates

Author: Michael V. Klibanov
language: en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date: 2021-09-07
This book summarizes the main analytical and numerical results of Carleman estimates. In the analytical part, Carleman estimates for three main types of Partial Differential Equations (PDEs) are derived. In the numerical part, first numerical methods are proposed to solve ill-posed Cauchy problems for both linear and quasilinear PDEs. Next, various versions of the convexification method are developed for a number of Coefficient Inverse Problems.
Carleman Estimates for Coefficient Inverse Problems and Numerical Applications

Author: Michael V. Klibanov
language: en
Publisher: Walter de Gruyter
Release Date: 2012-04-17
In this monograph, the main subject of the author's considerations is coefficient inverse problems. Arising in many areas of natural sciences and technology, such problems consist of determining the variable coefficients of a certain differential operator defined in a domain from boundary measurements of a solution or its functionals. Although the authors pay strong attention to the rigorous justification of known results, they place the primary emphasis on new concepts and developments.