Cancer Complexity Computation

Download Cancer Complexity Computation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Cancer Complexity Computation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Cancer, Complexity, Computation

This book presents unique compendium of groundbreaking ideas where scientists from many different backgrounds are united in their interest in interdisciplinary approaches towards origins and development of cancers, innovative ways of searching for cancer treatment and the role of cancer in the evolution. Chapters give an unequivocal slice of all areas that relate to a quest for understanding cancer and its origin as many-fold nonlinear system, complexity of the cancer developments, a search for cancer treatment using artificial intelligence and evolutionary optimisation, novel modelling techniques, molecular origin of cancer, the role of cancer in evolution of species, interpretation of cancer in terms of artificial life and artificial immune systems, swarm intelligence, cellular automata, computational systems biology, genetic networks, cellular computing, validation through in vitro/vivo tumour models and tumour on chip devices. The book is an inspiring blend of theoretical and experimental results, concepts and paradigms. Distinctive features The book advances widely popular topics of cancer origin, treatment and understanding of its progress The book is comprised of unique chapters written by world top experts in theoretical and applied oncology, complexity theory, mathematics, computer science. The book illustrates attractive examples of mathematical and computer models and experimental setups.
Computational Methods for Understanding Complexity: The Use of Formal Methods in Biology

Author: David A. Rosenblueth,
language: en
Publisher: Frontiers Media SA
Release Date: 2016-11-21
The complexity of living organisms surpasses our unaided habilities of analysis. Hence, computational and mathematical methods are necessary for increasing our understanding of biological systems. At the same time, there has been a phenomenal recent progress allowing the application of novel formal methods to new domains. This progress has spurred a conspicuous optimism in computational biology. This optimism, in turn, has promoted a rapid increase in collaboration between specialists of biology with specialists of computer science. Through sheer complexity, however, many important biological problems are at present intractable, and it is not clear whether we will ever be able to solve such problems. We are in the process of learning what kind of model and what kind of analysis and synthesis techniques to use for a particular problem. Some existing formalisms have been readily used in biological problems, others have been adapted to biological needs, and still others have been especially developed for biological systems. This Research Topic has examples of cases (1) employing existing methods, (2) adapting methods to biology, and (3) developing new methods. We can also see discrete and Boolean models, and the use of both simulators and model checkers. Synthesis is exemplified by manual and by machine-learning methods. We hope that the articles collected in this Research Topic will stimulate new research.
Computational Systems Biology of Cancer

The future of cancer research and the development of new therapeutic strategies rely on our ability to convert biological and clinical questions into mathematical models—integrating our knowledge of tumour progression mechanisms with the tsunami of information brought by high-throughput technologies such as microarrays and next-generation sequencing. Offering promising insights on how to defeat cancer, the emerging field of systems biology captures the complexity of biological phenomena using mathematical and computational tools. Novel Approaches to Fighting Cancer Drawn from the authors’ decade-long work in the cancer computational systems biology laboratory at Institut Curie (Paris, France), Computational Systems Biology of Cancer explains how to apply computational systems biology approaches to cancer research. The authors provide proven techniques and tools for cancer bioinformatics and systems biology research. Effectively Use Algorithmic Methods and Bioinformatics Tools in Real Biological Applications Suitable for readers in both the computational and life sciences, this self-contained guide assumes very limited background in biology, mathematics, and computer science. It explores how computational systems biology can help fight cancer in three essential aspects: Categorising tumours Finding new targets Designing improved and tailored therapeutic strategies Each chapter introduces a problem, presents applicable concepts and state-of-the-art methods, describes existing tools, illustrates applications using real cases, lists publically available data and software, and includes references to further reading. Some chapters also contain exercises. Figures from the text and scripts/data for reproducing a breast cancer data analysis are available at www.cancer-systems-biology.net.