Calculus In Vector Spaces Revised Expanded

Download Calculus In Vector Spaces Revised Expanded PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Calculus In Vector Spaces Revised Expanded book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Calculus in Vector Spaces, Second Edition, Revised Expanded

Calculus in Vector Spaces addresses linear algebra from the basics to the spectral theorem and examines a range of topics in multivariable calculus. This second edition introduces, among other topics, the derivative as a linear transformation, presents linear algebra in a concrete context based on complementary ideas in calculus, and explains differential forms on Euclidean space, allowing for Green's theorem, Gauss's theorem, and Stokes's theorem to be understood in a natural setting. Mathematical analysts, algebraists, engineers, physicists, and students taking advanced calculus and linear algebra courses should find this book useful.
Calculus in Vector Spaces, Revised Expanded

Calculus in Vector Spaces addresses linear algebra from the basics to the spectral theorem and examines a range of topics in multivariable calculus. This second edition introduces, among other topics, the derivative as a linear transformation, presents linear algebra in a concrete context based on complementary ideas in calculus, and explains differential forms on Euclidean space, allowing for Green's theorem, Gauss's theorem, and Stokes's theorem to be understood in a natural setting. Mathematical analysts, algebraists, engineers, physicists, and students taking advanced calculus and linear algebra courses should find this book useful.
Analysis, Manifolds and Physics Revised Edition

Author: Yvonne Choquet-Bruhat
language: en
Publisher: Gulf Professional Publishing
Release Date: 1982
This reference book, which has found wide use as a text, provides an answer to the needs of graduate physical mathematics students and their teachers. The present edition is a thorough revision of the first, including a new chapter entitled ``Connections on Principle Fibre Bundles'' which includes sections on holonomy, characteristic classes, invariant curvature integrals and problems on the geometry of gauge fields, monopoles, instantons, spin structure and spin connections. Many paragraphs have been rewritten, and examples and exercises added to ease the study of several chapters. The index includes over 130 entries.