Building Transformer Models With Attention


Download Building Transformer Models With Attention PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Building Transformer Models With Attention book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Building Transformer Models with Attention


Building Transformer Models with Attention

Author: Jason Brownlee

language: en

Publisher: Machine Learning Mastery

Release Date: 2022-11-01


DOWNLOAD





If you have been around long enough, you should notice that your search engine can understand human language much better than in previous years. The game changer was the attention mechanism. It is not an easy topic to explain, and it is sad to see someone consider that as secret magic. If we know more about attention and understand the problem it solves, we can decide if it fits into our project and be more comfortable using it. If you are interested in natural language processing and want to tap into the most advanced technique in deep learning for NLP, this new Ebook—in the friendly Machine Learning Mastery style that you’re used to—is all you need. Using clear explanations and step-by-step tutorial lessons, you will learn how attention can get the job done and why we build transformer models to tackle the sequence data. You will also create your own transformer model that translates sentences from one language to another.

Building Transformer Models with PyTorch 2.0


Building Transformer Models with PyTorch 2.0

Author: Prem Timsina

language: en

Publisher: BPB Publications

Release Date: 2024-03-08


DOWNLOAD





Your key to transformer based NLP, vision, speech, and multimodalities KEY FEATURES ● Transformer architecture for different modalities and multimodalities. ● Practical guidelines to build and fine-tune transformer models. ● Comprehensive code samples with detailed documentation. DESCRIPTION This book covers transformer architecture for various applications including NLP, computer vision, speech processing, and predictive modeling with tabular data. It is a valuable resource for anyone looking to harness the power of transformer architecture in their machine learning projects. The book provides a step-by-step guide to building transformer models from scratch and fine-tuning pre-trained open-source models. It explores foundational model architecture, including GPT, VIT, Whisper, TabTransformer, Stable Diffusion, and the core principles for solving various problems with transformers. The book also covers transfer learning, model training, and fine-tuning, and discusses how to utilize recent models from Hugging Face. Additionally, the book explores advanced topics such as model benchmarking, multimodal learning, reinforcement learning, and deploying and serving transformer models. In conclusion, this book offers a comprehensive and thorough guide to transformer models and their various applications. WHAT YOU WILL LEARN ● Understand the core architecture of various foundational models, including single and multimodalities. ● Step-by-step approach to developing transformer-based Machine Learning models. ● Utilize various open-source models to solve your business problems. ● Train and fine-tune various open-source models using PyTorch 2.0 and the Hugging Face ecosystem. ● Deploy and serve transformer models. ● Best practices and guidelines for building transformer-based models. WHO THIS BOOK IS FOR This book caters to data scientists, Machine Learning engineers, developers, and software architects interested in the world of generative AI. TABLE OF CONTENTS 1. Transformer Architecture 2. Hugging Face Ecosystem 3. Transformer Model in PyTorch 4. Transfer Learning with PyTorch and Hugging Face 5. Large Language Models: BERT, GPT-3, and BART 6. NLP Tasks with Transformers 7. CV Model Anatomy: ViT, DETR, and DeiT 8. Computer Vision Tasks with Transformers 9. Speech Processing Model Anatomy: Whisper, SpeechT5, and Wav2Vec 10. Speech Tasks with Transformers 11. Transformer Architecture for Tabular Data Processing 12. Transformers for Tabular Data Regression and Classification 13. Multimodal Transformers, Architectures and Applications 14. Explore Reinforcement Learning for Transformer 15. Model Export, Serving, and Deployment 16. Transformer Model Interpretability, and Experimental Visualization 17. PyTorch Models: Best Practices and Debugging

PyTorch Cookbook


PyTorch Cookbook

Author: Matthew Rosch

language: en

Publisher: GitforGits

Release Date: 2023-10-04


DOWNLOAD





Starting a PyTorch Developer and Deep Learning Engineer career? Check out this 'PyTorch Cookbook,' a comprehensive guide with essential recipes and solutions for PyTorch and the ecosystem. The book covers PyTorch deep learning development from beginner to expert in well-written chapters. The book simplifies neural networks, training, optimization, and deployment strategies chapter by chapter. The first part covers PyTorch basics, data preprocessing, tokenization, and vocabulary. Next, it builds CNN, RNN, Attentional Layers, and Graph Neural Networks. The book emphasizes distributed training, scalability, and multi-GPU training for real-world scenarios. Practical embedded systems, mobile development, and model compression solutions illuminate on-device AI applications. However, the book goes beyond code and algorithms. It also offers hands-on troubleshooting and debugging for end-to-end deep learning development. 'PyTorch Cookbook' covers data collection to deployment errors and provides detailed solutions to overcome them. This book integrates PyTorch with ONNX Runtime, PySyft, Pyro, Deep Graph Library (DGL), Fastai, and Ignite, showing you how to use them for your projects. This book covers real-time inferencing, cluster training, model serving, and cross-platform compatibility. You'll learn to code deep learning architectures, work with neural networks, and manage deep learning development stages. 'PyTorch Cookbook' is a complete manual that will help you become a confident PyTorch developer and a smart Deep Learning engineer. Its clear examples and practical advice make it a must-read for anyone looking to use PyTorch and advance in deep learning. Key Learnings Comprehensive introduction to PyTorch, equipping readers with foundational skills for deep learning. Practical demonstrations of various neural networks, enhancing understanding through hands-on practice. Exploration of Graph Neural Networks (GNN), opening doors to cutting-edge research fields. In-depth insight into PyTorch tools and libraries, expanding capabilities beyond core functions. Step-by-step guidance on distributed training, enabling scalable deep learning and AI projects. Real-world application insights, bridging the gap between theoretical knowledge and practical execution. Focus on mobile and embedded development with PyTorch, leading to on-device AI. Emphasis on error handling and troubleshooting, preparing readers for real-world challenges. Advanced topics like real-time inferencing and model compression, providing future ready skill. Table of Content Introduction to PyTorch 2.0 Deep Learning Building Blocks Convolutional Neural Networks Recurrent Neural Networks Natural Language Processing Graph Neural Networks (GNNs) Working with Popular PyTorch Tools Distributed Training and Scalability Mobile and Embedded Development