Building Python Web Apis With Fastapi A Fast Paced Guide To Building High Performance Robust Web Apis With Very Little Boilerplate Code


Download Building Python Web Apis With Fastapi A Fast Paced Guide To Building High Performance Robust Web Apis With Very Little Boilerplate Code PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Building Python Web Apis With Fastapi A Fast Paced Guide To Building High Performance Robust Web Apis With Very Little Boilerplate Code book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Building Python Web APIs with FastAPI


Building Python Web APIs with FastAPI

Author: Abdulazeez Abdulazeez Adeshina

language: en

Publisher: Packt Publishing Ltd

Release Date: 2022-07-29


DOWNLOAD





Discover FastAPI features and best practices for building and deploying high-quality web APIs from scratch Key Features • A practical guide to developing production-ready web APIs rapidly in Python • Learn how to put FastAPI into practice by implementing it in real-world scenarios • Explore FastAPI, its syntax, and configurations for deploying applications Book Description RESTful web services are commonly used to create APIs for web-based applications owing to their light weight and high scalability. This book will show you how FastAPI, a high-performance web framework for building RESTful APIs in Python, allows you to build robust web APIs that are simple and intuitive and makes it easy to build quickly with very little boilerplate code. This book will help you set up a FastAPI application in no time and show you how to use FastAPI to build a REST API that receives and responds to user requests. You'll go on to learn how to handle routing and authentication while working with databases in a FastAPI application. The book walks you through the four key areas: building and using routes for create, read, update, and delete (CRUD) operations; connecting the application to SQL and NoSQL databases; securing the application built; and deploying your application locally or to a cloud environment. By the end of this book, you'll have developed a solid understanding of the FastAPI framework and be able to build and deploy robust REST APIs. What you will learn • Set up a FastAPI application that is fully functional and secure • Understand how to handle errors from requests and send proper responses in FastAPI • Integrate and connect your application to a SQL and NoSQL (MongoDB) database • Perform CRUD operations using SQL and FastAPI • Manage concurrency in FastAPI applications • Implement authentication in a FastAPI application • Deploy a FastAPI application to any platform Who this book is for This book is for Python developers who want to learn FastAPI in a pragmatic way to create robust web APIs with ease. If you are a Django or Flask developer looking to try something new that's faster, more efficient, and produces fewer bugs, this FastAPI Python book is for you. The book assumes intermediate-level knowledge of Python programming.

Building Data Science Applications with FastAPI


Building Data Science Applications with FastAPI

Author: Francois Voron

language: en

Publisher: Packt Publishing Ltd

Release Date: 2021-10-08


DOWNLOAD





Get well-versed with FastAPI features and best practices for testing, monitoring, and deployment to run high-quality and robust data science applications Key FeaturesCover the concepts of the FastAPI framework, including aspects relating to asynchronous programming, type hinting, and dependency injectionDevelop efficient RESTful APIs for data science with modern PythonBuild, test, and deploy high performing data science and machine learning systems with FastAPIBook Description FastAPI is a web framework for building APIs with Python 3.6 and its later versions based on standard Python-type hints. With this book, you'll be able to create fast and reliable data science API backends using practical examples. This book starts with the basics of the FastAPI framework and associated modern Python programming language concepts. You'll be taken through all the aspects of the framework, including its powerful dependency injection system and how you can use it to communicate with databases, implement authentication and integrate machine learning models. Later, you'll cover best practices relating to testing and deployment to run a high-quality and robust application. You'll also be introduced to the extensive ecosystem of Python data science packages. As you progress, you'll learn how to build data science applications in Python using FastAPI. The book also demonstrates how to develop fast and efficient machine learning prediction backends and test them to achieve the best performance. Finally, you'll see how to implement a real-time face detection system using WebSockets and a web browser as a client. By the end of this FastAPI book, you'll have not only learned how to implement Python in data science projects but also how to maintain and design them to meet high programming standards with the help of FastAPI. What you will learnExplore the basics of modern Python and async I/O programmingGet to grips with basic and advanced concepts of the FastAPI frameworkImplement a FastAPI dependency to efficiently run a machine learning modelIntegrate a simple face detection algorithm in a FastAPI backendIntegrate common Python data science libraries in a web backendDeploy a performant and reliable web backend for a data science applicationWho this book is for This Python data science book is for data scientists and software developers interested in gaining knowledge of FastAPI and its ecosystem to build data science applications. Basic knowledge of data science and machine learning concepts and how to apply them in Python is recommended.

Hands-On Docker for Microservices with Python


Hands-On Docker for Microservices with Python

Author: Jaime Buelta

language: en

Publisher: Packt Publishing Ltd

Release Date: 2019-11-22


DOWNLOAD





A step-by-step guide to building microservices using Python and Docker, along with managing and orchestrating them with Kubernetes Key FeaturesLearn to use Docker containers to create, operate, and deploy your microservicesCreate workflows to manage independent deployments on coordinating services using CI and GitOps through GitHub, Travis CI, and FluxDevelop a REST microservice in Python using the Flask framework and Postgres databaseBook Description Microservices architecture helps create complex systems with multiple, interconnected services that can be maintained by independent teams working in parallel. This book guides you on how to develop these complex systems with the help of containers. You’ll start by learning to design an efficient strategy for migrating a legacy monolithic system to microservices. You’ll build a RESTful microservice with Python and learn how to encapsulate the code for the services into a container using Docker. While developing the services, you’ll understand how to use tools such as GitHub and Travis CI to ensure continuous delivery (CD) and continuous integration (CI). As the systems become complex and grow in size, you’ll be introduced to Kubernetes and explore how to orchestrate a system of containers while managing multiple services. Next, you’ll configure Kubernetes clusters for production-ready environments and secure them for reliable deployments. In the concluding chapters, you’ll learn how to detect and debug critical problems with the help of logs and metrics. Finally, you’ll discover a variety of strategies for working with multiple teams dealing with different microservices for effective collaboration. By the end of this book, you’ll be able to build production-grade microservices as well as orchestrate a complex system of services using containers. What you will learnDiscover how to design, test, and operate scalable microservicesCoordinate and deploy different services using KubernetesUse Docker to construct scalable and manageable applications with microservicesUnderstand how to monitor a complete system to ensure early detection of problemsBecome well versed with migrating from an existing monolithic system to a microservice oneUse load balancing to ensure seamless operation between the old monolith and the new serviceWho this book is for This book is for developers, engineers, or software architects who are trying to move away from traditional approaches for building complex multi-service systems by adopting microservices and containers. Although familiarity with Python programming is assumed, no prior knowledge of Docker is required.