Building Python Microservices With Fastapi

Download Building Python Microservices With Fastapi PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Building Python Microservices With Fastapi book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Building Python Microservices with FastAPI

Author: Sherwin John C. Tragura
language: en
Publisher: Packt Publishing Ltd
Release Date: 2022-08-30
Discover the secrets of building Python microservices using the FastAPI framework Key Features Provides a reference that contains definitions, illustrations, comparative analysis, and the implementation of real-world apps Covers concepts, core details, and advanced integration and design-related topics Imparts context, app templates, suggestions, and insights that are helpful to actual projects Book DescriptionFastAPI is an Asynchronous Server Gateway Interface (ASGI)-based framework that can help build modern, manageable, and fast microservices. Because of its asynchronous core platform, this ASGI-based framework provides the best option when it comes to performance, reliability, and scalability over the WSGI-based Django and Flask. When working with Python, Flask, and Django microservices, you’ll be able to put your knowledge to work with this practical guide to building seamlessly manageable and fast microservices. You’ll begin by understanding the background of FastAPI and learning how to install, configure, and use FastAPI to decompose business units. You’ll explore a unique and asynchronous REST API framework that can provide a better option when it comes to building microservices. After that, this book will guide you on how to apply and translate microservices design patterns in building various microservices applications and RESTful APIs using the FastAPI framework. By the end of this microservices book, you’ll be able to understand, build, deploy, test, and experiment with microservices and their components using the FastAPI framework.What you will learn Understand, orient, and implement REST APIs using the basic components of the FastAPI framework Build asynchronous as well as synchronous REST services using the built-in pydantic module and asyncio support Create small-scale and large-scale microservices applications using features supported by FastAPI Build event-driven and message-driven applications using the framework Create an asynchronous and synchronous data layer with both relational and NoSQL databases Perform numerical and symbolic computations with FastAPI Who this book is for This book is for Python web developers, advanced Python developers, and backend developers using Flask or Django who want to learn how to use the FastAPI framework to implement microservices. Readers familiar with the REST API and microservices will also benefit from this book. Some parts of the book contain general concepts, processes, and instructions that intermediate-level developers and Python enthusiasts can relate to as well.
Microservice APIs

Author: Jose Haro Peralta
language: en
Publisher: Simon and Schuster
Release Date: 2023-03-07
Strategies, best practices, and patterns that will help you design resilient microservices architecture and streamline your API integrations. In Microservice APIs, you’ll discover: Service decomposition strategies for microservices Documentation-driven development for APIs Best practices for designing REST and GraphQL APIs Documenting REST APIs with the OpenAPI specification (formerly Swagger) Documenting GraphQL APIs using the Schema Definition Language Building microservices APIs with Flask, FastAPI, Ariadne, and other frameworks Service implementation patterns for loosely coupled services Property-based testing to validate your APIs, and using automated API testing frameworks like schemathesis and Dredd Adding authentication and authorization to your microservice APIs using OAuth and OpenID Connect (OIDC) Deploying and operating microservices in AWS with Docker and Kubernetes Microservice APIs teaches you practical techniques for designing robust microservices with APIs that are easy to understand, consume, and maintain. You’ll benefit from author José Haro Peralta’s years of experience experimenting with microservices architecture, dodging pitfalls and learning from mistakes he’s made. Inside you’ll find strategies for delivering successful API integrations, implementing services with clear boundaries, managing cloud deployments, and handling microservices security. Written in a framework-agnostic manner, its universal principles can easily be applied to your favorite stack and toolset. About the technology Clean, clear APIs are essential to the success of microservice applications. Well-designed APIs enable reliable integrations between services and help simplify maintenance, scaling, and redesigns. Th is book teaches you the patterns, protocols, and strategies you need to design, build, and deploy effective REST and GraphQL microservices APIs. About the book Microservice APIs gathers proven techniques for creating and building easy-to-consume APIs for microservices applications. Rich with proven advice and Python-based examples, this practical book focuses on implementation over philosophy. You’ll learn how to build robust microservice APIs, test and protect them, and deploy them to the cloud following principles and patterns that work in any language. What's inside Service decomposition strategies for microservices Best practices for designing and building REST and GraphQL APIs Service implementation patterns for loosely coupled components API authorization with OAuth and OIDC Deployments with AWS and Kubernetes About the reader For developers familiar with the basics of web development. Examples are in Python. About the author José Haro Peralta is a consultant, author, and instructor. He’s also the founder of microapis.io. Table of Contents PART 1 INTRODUCING MICROSERVICE APIS 1 What are microservice APIs? 2 A basic API implementation 3 Designing microservices PART 2 DESIGNING AND BUILDING REST APIS 4 Principles of REST API design 5 Documenting REST APIs with OpenAPI 6 Building REST APIs with Python 7 Service implementation patterns for microservices PART 3 DESIGNING AND BUILDING GRAPHQL APIS 8 Designing GraphQL APIs 9 Consuming GraphQL APIs 10 Building GraphQL APIs with Python PART 4 SECURING, TESTING, AND DEPLOYING MICROSERVICE APIS 11 API authorization and authentication 12 Testing and validating APIs 13 Dockerizing microservice APIs 14 Deploying microservice APIs with Kubernetes
Building Data Science Applications with FastAPI

Author: Francois Voron
language: en
Publisher: Packt Publishing Ltd
Release Date: 2021-10-08
Get well-versed with FastAPI features and best practices for testing, monitoring, and deployment to run high-quality and robust data science applications Key FeaturesCover the concepts of the FastAPI framework, including aspects relating to asynchronous programming, type hinting, and dependency injectionDevelop efficient RESTful APIs for data science with modern PythonBuild, test, and deploy high performing data science and machine learning systems with FastAPIBook Description FastAPI is a web framework for building APIs with Python 3.6 and its later versions based on standard Python-type hints. With this book, you'll be able to create fast and reliable data science API backends using practical examples. This book starts with the basics of the FastAPI framework and associated modern Python programming language concepts. You'll be taken through all the aspects of the framework, including its powerful dependency injection system and how you can use it to communicate with databases, implement authentication and integrate machine learning models. Later, you'll cover best practices relating to testing and deployment to run a high-quality and robust application. You'll also be introduced to the extensive ecosystem of Python data science packages. As you progress, you'll learn how to build data science applications in Python using FastAPI. The book also demonstrates how to develop fast and efficient machine learning prediction backends and test them to achieve the best performance. Finally, you'll see how to implement a real-time face detection system using WebSockets and a web browser as a client. By the end of this FastAPI book, you'll have not only learned how to implement Python in data science projects but also how to maintain and design them to meet high programming standards with the help of FastAPI. What you will learnExplore the basics of modern Python and async I/O programmingGet to grips with basic and advanced concepts of the FastAPI frameworkImplement a FastAPI dependency to efficiently run a machine learning modelIntegrate a simple face detection algorithm in a FastAPI backendIntegrate common Python data science libraries in a web backendDeploy a performant and reliable web backend for a data science applicationWho this book is for This Python data science book is for data scientists and software developers interested in gaining knowledge of FastAPI and its ecosystem to build data science applications. Basic knowledge of data science and machine learning concepts and how to apply them in Python is recommended.