Building Machine Learning Systems Using Python

Download Building Machine Learning Systems Using Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Building Machine Learning Systems Using Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Building Machine Learning Systems Using Python

Explore Machine Learning Techniques, Different Predictive Models, and its Applications Ê KEY FEATURESÊÊ _ Extensive coverage of real examples on implementation and working of ML models. _ Includes different strategies used in Machine Learning by leading data scientists. _ Focuses on Machine Learning concepts and their evolution to algorithms. DESCRIPTIONÊ This book covers basic concepts of Machine Learning, various learning paradigms, different architectures and algorithms used in these paradigms. You will learn the power of ML models by exploring different predictive modeling techniques such as Regression, Clustering, and Classification. You will also get hands-on experience on methods and techniques such as Overfitting, Underfitting, Random Forest, Decision Trees, PCA, and Support Vector Machines. In this book real life examples with fully working of Python implementations are discussed in detail. At the end of the book you will learn about the unsupervised learning covering Hierarchical Clustering, K-means Clustering, Dimensionality Reduction, Anomaly detection, Principal Component Analysis.Ê WHAT YOU WILL LEARN _ Learn to perform data engineering and analysis. _ Build prototype ML models and production ML models from scratch. _ Develop strong proficiency in using scikit-learn and Python. _ Get hands-on experience with Random Forest, Logistic Regression, SVM, PCA, and Neural Networks. WHO THIS BOOK IS FORÊÊ This book is meant for beginners who want to gain knowledge about Machine Learning in detail. This book can also be used by Machine Learning users for a quick reference for fundamentals in Machine Learning. Readers should have basic knowledge of Python and Scikit-Learn before reading the book. TABLE OF CONTENTS 1. Introduction to Machine Learning 2. Linear Regression 3. Classification Using Logistic Regression 4. Overfitting and Regularization 5. Feasibility of Learning 6. Support Vector Machine 7. Neural Network 8. Decision Trees 9. Unsupervised Learning 10. Theory of Generalization 11. Bias and Fairness in ML
Building Machine Learning Systems with Python

Author: Luis Pedro Coelho
language: en
Publisher: Packt Publishing Ltd
Release Date: 2018-07-31
Get more from your data by creating practical machine learning systems with Python Key Features Develop your own Python-based machine learning system Discover how Python offers multiple algorithms for modern machine learning systems Explore key Python machine learning libraries to implement in your projects Book Description Machine learning allows systems to learn things without being explicitly programmed to do so. Python is one of the most popular languages used to develop machine learning applications, which take advantage of its extensive library support. This third edition of Building Machine Learning Systems with Python addresses recent developments in the field by covering the most-used datasets and libraries to help you build practical machine learning systems. Using machine learning to gain deeper insights from data is a key skill required by modern application developers and analysts alike. Python, being a dynamic language, allows for fast exploration and experimentation. This book shows you exactly how to find patterns in your raw data. You will start by brushing up on your Python machine learning knowledge and being introduced to libraries. You'll quickly get to grips with serious, real-world projects on datasets, using modeling and creating recommendation systems. With Building Machine Learning Systems with Python, you’ll gain the tools and understanding required to build your own systems, all tailored to solve real-world data analysis problems. By the end of this book, you will be able to build machine learning systems using techniques and methodologies such as classification, sentiment analysis, computer vision, reinforcement learning, and neural networks. What you will learn Build a classification system that can be applied to text, images, and sound Employ Amazon Web Services (AWS) to run analysis on the cloud Solve problems related to regression using scikit-learn and TensorFlow Recommend products to users based on their past purchases Understand different ways to apply deep neural networks on structured data Address recent developments in the field of computer vision and reinforcement learning Who this book is for Building Machine Learning Systems with Python is for data scientists, machine learning developers, and Python developers who want to learn how to build increasingly complex machine learning systems. You will use Python's machine learning capabilities to develop effective solutions. Prior knowledge of Python programming is expected.
Building Machine Learning Systems with Python

Author: Willi Richert
language: en
Publisher: Packt Publishing Ltd
Release Date: 2013-01-01
This is a tutorial-driven and practical, but well-grounded book showcasing good Machine Learning practices. There will be an emphasis on using existing technologies instead of showing how to write your own implementations of algorithms. This book is a scenario-based, example-driven tutorial. By the end of the book you will have learnt critical aspects of Machine Learning Python projects and experienced the power of ML-based systems by actually working on them.This book primarily targets Python developers who want to learn about and build Machine Learning into their projects, or who want to pro.