Building Knowledge Graphs A Practitioner S Guide

Download Building Knowledge Graphs A Practitioner S Guide PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Building Knowledge Graphs A Practitioner S Guide book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Building Knowledge Graphs

Author: Jesus Barrasa
language: en
Publisher: "O'Reilly Media, Inc."
Release Date: 2023-06-22
Incredibly useful, knowledge graphs help organizations keep track of medical research, cybersecurity threat intelligence, GDPR compliance, web user engagement, and much more. They do so by storing interlinked descriptions of entities—objects, events, situations, or abstract concepts—and encoding the underlying information. How do you create a knowledge graph? And how do you move it from theory into production? Using hands-on examples, this practical book shows data scientists and data engineers how to build their own knowledge graphs. Authors Jesús Barrasa and Jim Webber from Neo4j illustrate common patterns for building knowledge graphs that solve many of today’s pressing knowledge management problems. You’ll quickly discover how these graphs become increasingly useful as you add data and augment them with algorithms and machine learning. Learn the organizing principles necessary to build a knowledge graph Explore how graph databases serve as a foundation for knowledge graphs Understand how to import structured and unstructured data into your graph Follow examples to build integration-and-search knowledge graphs Learn what pattern detection knowledge graphs help you accomplish Explore dependency knowledge graphs through examples Use examples of natural language knowledge graphs and chatbots Use graph algorithms and ML to gain insight into connected data
The Practitioner's Guide to Graph Data

Graph data closes the gap between the way humans and computers view the world. While computers rely on static rows and columns of data, people navigate and reason about life through relationships. This practical guide demonstrates how graph data brings these two approaches together. By working with concepts from graph theory, database schema, distributed systems, and data analysis, you’ll arrive at a unique intersection known as graph thinking. Authors Denise Koessler Gosnell and Matthias Broecheler show data engineers, data scientists, and data analysts how to solve complex problems with graph databases. You’ll explore templates for building with graph technology, along with examples that demonstrate how teams think about graph data within an application. Build an example application architecture with relational and graph technologies Use graph technology to build a Customer 360 application, the most popular graph data pattern today Dive into hierarchical data and troubleshoot a new paradigm that comes from working with graph data Find paths in graph data and learn why your trust in different paths motivates and informs your preferences Use collaborative filtering to design a Netflix-inspired recommendation system