Building Ai Intensive Python Applications

Download Building Ai Intensive Python Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Building Ai Intensive Python Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Building AI Intensive Python Applications

Author: Rachelle Palmer
language: en
Publisher: Packt Publishing Ltd
Release Date: 2024-09-06
Master retrieval-augmented generation architecture and fine-tune your AI stack, along with discovering real-world use cases and best practices to create powerful AI apps Key Features Get to grips with the fundamentals of LLMs, vector databases, and Python frameworks Implement effective retrieval-augmented generation strategies with MongoDB Atlas Optimize AI models for performance and accuracy with model compression and deployment optimization Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe era of generative AI is upon us, and this book serves as a roadmap to harness its full potential. With its help, you’ll learn the core components of the AI stack: large language models (LLMs), vector databases, and Python frameworks, and see how these technologies work together to create intelligent applications. The chapters will help you discover best practices for data preparation, model selection, and fine-tuning, and teach you advanced techniques such as retrieval-augmented generation (RAG) to overcome common challenges, such as hallucinations and data leakage. You’ll get a solid understanding of vector databases, implement effective vector search strategies, refine models for accuracy, and optimize performance to achieve impactful results. You’ll also identify and address AI failures to ensure your applications deliver reliable and valuable results. By evaluating and improving the output of LLMs, you’ll be able to enhance their performance and relevance. By the end of this book, you’ll be well-equipped to build sophisticated AI applications that deliver real-world value.What you will learn Understand the architecture and components of the generative AI stack Explore the role of vector databases in enhancing AI applications Master Python frameworks for AI development Implement Vector Search in AI applications Find out how to effectively evaluate LLM output Overcome common failures and challenges in AI development Who this book is for This book is for software engineers and developers looking to build intelligent applications using generative AI. While the book is suitable for beginners, a basic understanding of Python programming is required to make the most of it.
Building AI Applications with Microsoft Semantic Kernel

Author: Lucas A. Meyer
language: en
Publisher: Packt Publishing Ltd
Release Date: 2024-06-21
Unlock the power of GenAI by effortlessly linking your C# and Python apps with cutting-edge models, orchestrating diverse AI services with finesse, and crafting bespoke applications through immersive, real-world examples Key Features Link your C# and Python applications with the latest AI models from OpenAI Combine and orchestrate different AI services such as text and image generators Create your own AI apps with real-world use case examples that show you how to use basic generative AI, create images, process documents, use a vector database Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionIn the fast-paced world of AI, developers are constantly seeking efficient ways to integrate AI capabilities into their apps. Microsoft Semantic Kernel simplifies this process by using the GenAI features from Microsoft and OpenAI. Written by Lucas A. Meyer, a Principal Research Scientist in Microsoft’s AI for Good Lab, this book helps you get hands on with Semantic Kernel. It begins by introducing you to different generative AI services such as GPT-3.5 and GPT-4, demonstrating their integration with Semantic Kernel. You’ll then learn to craft prompt templates for reuse across various AI services and variables. Next, you’ll learn how to add functionality to Semantic Kernel by creating your own plugins. The second part of the book shows you how to combine multiple plugins to execute complex actions, and how to let Semantic Kernel use its own AI to solve complex problems by calling plugins, including the ones made by you. The book concludes by teaching you how to use vector databases to expand the memory of your AI services and how to help AI remember the context of earlier requests. You’ll also be guided through several real-world examples of applications, such as RAG and custom GPT agents. By the end of this book, you'll have gained the knowledge you need to start using Semantic Kernel to add AI capabilities to your applications.What you will learn Write reusable AI prompts and connect to different AI providers Create new plugins that extend the capabilities of AI services Understand how to combine multiple plugins to execute complex actions Orchestrate multiple AI services to accomplish a task Leverage the powerful planner to automatically create appropriate AI calls Use vector databases as additional memory for your AI tasks Deploy your application to ChatGPT, making it available to hundreds of millions of users Who this book is for This book is for beginner-level to experienced .NET or Python software developers who want to quickly incorporate the latest AI technologies into their applications, without having to learn the details of every new AI service. Product managers with some development experience will find this book helpful while creating proof-of-concept applications. This book requires working knowledge of programming basics.
Building Generative AI Services with FastAPI

Author: Alireza Parandeh
language: en
Publisher: "O'Reilly Media, Inc."
Release Date: 2025-04-15
Ready to build production-grade applications with generative AI? This practical guide takes you through designing and deploying AI services using the FastAPI web framework. Learn how to integrate models that process text, images, audio, and video while seamlessly interacting with databases, filesystems, websites, and APIs. Whether you're a web developer, data scientist, or DevOps engineer, this book equips you with the tools to build scalable, real-time AI applications. Author Alireza Parandeh provides clear explanations and hands-on examples covering authentication, concurrency, caching, and retrieval-augmented generation (RAG) with vector databases. You'll also explore best practices for testing AI outputs, optimizing performance, and securing microservices. With containerized deployment using Docker, you'll be ready to launch AI-powered applications confidently in the cloud. Build generative AI services that interact with databases, filesystems, websites, and APIs Manage concurrency in AI workloads and handle long-running tasks Stream AI-generated outputs in real time via WebSocket and server-sent events Secure services with authentication, content filtering, throttling, and rate limiting Optimize AI performance with caching, batch processing, and fine-tuning techniques Visit the Book's Website.