Build Your Own Quadcopter Power Up Your Designs With The Parallax Elev 8

Download Build Your Own Quadcopter Power Up Your Designs With The Parallax Elev 8 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Build Your Own Quadcopter Power Up Your Designs With The Parallax Elev 8 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Build Your Own Quadcopter: Power Up Your Designs with the Parallax Elev-8

Author: Donald Norris
language: en
Publisher: McGraw Hill Professional
Release Date: 2014-05-06
Build a custom multirotor aircraft! Build and customize radio-controlled quadcopters that take off, land, hover, and soar. Build Your Own Quadcopter: Power Up Your Designs with the Parallax Elev-8 features step-by-step assembly plans and experiments that will have you launching fully functioning quadcopters in no time. Discover how to connect Elev-8 components, program the microcontroller, use GPS, and safely fly your quadcopter. This fun, do-it-yourself guide fuels your creativity with ideas for radical enhancements, including return-to-home functionality, formation flying, and even artificial intelligence! Understand the principles that govern how quadcopters fly Explore the parts included in your Parallax Elev-8 kit Follow illustrated instructions and assemble a basic 'copter Connect the Parallax chip to a PC and write Spin and C programs Build radio-controlled systems that minimize interference Add GPS and track your aircraft through Google Earth Beam flight information to smartphones with WiFi and XBee technology Mount cameras and stream real-time video back to the ground Train to safely operate a quadcopter using flight simulation software
Introduction to Multicopter Design and Control

This book is the first textbook specially on multicopter systems in the world. It provides a comprehensive overview of multicopter systems, rather than focusing on a single method or technique. The fifteen chapters are divided into five parts, covering the topics of multicopter design, modeling, state estimation, control, and decision-making. It differs from other books in the field in three major respects: it is basic and practical, offering self-contained content and presenting hands-on methods; it is comprehensive and systematic; and it is timely. It is also closely related to the autopilot that users often employ today and provides insights into the code employed. As such, it offers a valuable resource for anyone interested in multicopters, including students, teachers, researchers, and engineers. This introductory text is a welcome addition to the literature on multicopter design and control, on which the author is an acknowledged authority. The book is directed to advanced undergraduate and beginning graduate students in aeronautical and control (or electrical) engineering, as well as to multicopter designers and hobbyists. ------- Professor W. Murray Wonham, University of Toronto "This is the single best introduction to multicopter control. Clear, comprehensive and progressing from basic principles to advanced techniques, it's a must read for anyone hoping to learn how to design flying robots." ------- Chris Anderson, 3D Robotics CEO.
Distributed Sensing and Intelligent Systems

This book is the proceeding of the 1st International Conference on Distributed Sensing and Intelligent Systems (ICDSIS2020) which will be held in The National School of Applied Sciences of Agadir, Ibn Zohr University, Agadir, Morocco on February 01-03, 2020. ICDSIS2020 is co-organized by Computer Vision and Intelligent Systems Lab, University of North Texas, USA as a scientific collaboration event with The National School of Applied Sciences of Agadir, Ibn Zohr University. ICDSIS2020 aims to foster students, researchers, academicians and industry persons in the field of Computer and Information Science, Intelligent Systems, and Electronics and Communication Engineering in general. The volume collects contributions from leading experts around the globe with the latest insights on emerging topics, and includes reviews, surveys, and research chapters covering all aspects of distributed sensing and intelligent systems. The volume is divided into 5 key sections: Distributed Sensing Applications; Intelligent Systems; Advanced theories and algorithms in machine learning and data mining; Artificial intelligence and optimization, and application to Internet of Things (IoT); and Cybersecurity and Secure Distributed Systems. This conference proceeding is an academic book which can be read by students, analysts, policymakers, and regulators interested in Distributed Sensing, Smart Network approaches, Smart Cities, IoT Applications, and Intelligent Applications. It is written in plain and easy language, and describes new concepts when they appear first so that a reader without prior background of the field finds it readable. The book is primarily intended for research students in sensor networks and IoT applications (including intelligent information systems, and smart sensors applications), academics in higher education institutions including universities and vocational colleges, policy makers and legislators.