Boundary Value Problems For Systems Of Differential Difference And Fractional Equations

Download Boundary Value Problems For Systems Of Differential Difference And Fractional Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Boundary Value Problems For Systems Of Differential Difference And Fractional Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Boundary Value Problems for Systems of Differential, Difference and Fractional Equations

Boundary Value Problems for Systems of Differential, Difference and Fractional Equations: Positive Solutions discusses the concept of a differential equation that brings together a set of additional constraints called the boundary conditions. As boundary value problems arise in several branches of math given the fact that any physical differential equation will have them, this book will provide a timely presentation on the topic. Problems involving the wave equation, such as the determination of normal modes, are often stated as boundary value problems. To be useful in applications, a boundary value problem should be well posed. This means that given the input to the problem there exists a unique solution, which depends continuously on the input. Much theoretical work in the field of partial differential equations is devoted to proving that boundary value problems arising from scientific and engineering applications are in fact well-posed. - Explains the systems of second order and higher orders differential equations with integral and multi-point boundary conditions - Discusses second order difference equations with multi-point boundary conditions - Introduces Riemann-Liouville fractional differential equations with uncoupled and coupled integral boundary conditions
Boundary Value Problems for Second-Order Finite Difference Equations and Systems

Author: Johnny Henderson
language: en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date: 2023-01-30
This is an indispensable reference for those mathematicians that conduct research activity in applications of fixed-point theory to boundary value problems for nonlinear difference equations. Coverage includes second-order finite difference equations and systems of second-order finite difference equations subject to diverse multi-point boundary conditions, and various methods to study the existence of positive solutions for these problems.
Nonlocal Nonlinear Fractional-order Boundary Value Problems

There has been a great advancement in the study of fractional-order nonlocal nonlinear boundary value problems during the last few decades. The interest in the subject of fractional-order boundary value problems owes to the extensive application of fractional differential equations in many engineering and scientific disciplines. Fractional-order differential and integral operators provide an excellent instrument for the description of memory and hereditary properties of various materials and processes, which contributed significantly to the popularity of the subject and motivated many researchers and modelers to shift their focus from classical models to fractional order models. Some peculiarities of physical, chemical or other processes happening inside the domain cannot be formulated with the aid of classical boundary conditions. This limitation led to the consideration of nonlocal and integral conditions which relate the boundary values of the unknown function to its values at some interior positions of the domain.The main objective for writing this book is to present some recent results on single-valued and multi-valued boundary value problems, involving different kinds of fractional differential and integral operators, and several kinds of nonlocal multi-point, integral, integro-differential boundary conditions. Much of the content of this book contains the recent research published by the authors on the topic.