Boundary Integral Equations In Elasticity Theory

Download Boundary Integral Equations In Elasticity Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Boundary Integral Equations In Elasticity Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Boundary Integral Equations in Elasticity Theory

by the author to the English edition The book aims to present a powerful new tool of computational mechanics, complex variable boundary integral equations (CV-BIE). The book is conceived as a continuation of the classical monograph by N. I. Muskhelishvili into the computer era. Two years have passed since the Russian edition of the present book. We have seen growing interest in numerical simulation of media with internal structure, and have evidence of the potential of the new methods. The evidence was especially clear in problems relating to multiple grains, blocks, cracks, inclusions and voids. This prompted me, when preparing the English edition, to place more emphasis on such topics. The other change was inspired by Professor Graham Gladwell. It was he who urged me to abridge the chain of formulae and to increase the number of examples. Now the reader will find more examples showing the potential and advantages of the analysis. The first chapter of the book contains a simple exposition of the theory of real variable potentials, including the hypersingular potential and the hypersingular equations. This makes up for the absence of such exposition in current textbooks, and reveals important links between the real variable BIE and the complex variable counterparts. The chapter may also help readers who are learning or lecturing on the boundary element method.
Boundary Integral Equations in Elasticity Theory

Author: A.M. Linkov
language: en
Publisher: Springer Science & Business Media
Release Date: 2002-04-30
by the author to the English edition The book aims to present a powerful new tool of computational mechanics, complex variable boundary integral equations (CV-BIE). The book is conceived as a continuation of the classical monograph by N. I. Muskhelishvili into the computer era. Two years have passed since the Russian edition of the present book. We have seen growing interest in numerical simulation of media with internal structure, and have evidence of the potential of the new methods. The evidence was especially clear in problems relating to multiple grains, blocks, cracks, inclusions and voids. This prompted me, when preparing the English edition, to place more emphasis on such topics. The other change was inspired by Professor Graham Gladwell. It was he who urged me to abridge the chain of formulae and to increase the number of examples. Now the reader will find more examples showing the potential and advantages of the analysis. The first chapter of the book contains a simple exposition of the theory of real variable potentials, including the hypersingular potential and the hypersingular equations. This makes up for the absence of such exposition in current textbooks, and reveals important links between the real variable BIE and the complex variable counterparts. The chapter may also help readers who are learning or lecturing on the boundary element method.
Boundary Integral Equations

Author: George C. Hsiao
language: en
Publisher: Springer Science & Business Media
Release Date: 2008-05-07
This book is devoted to the mathematical foundation of boundary integral equations. The combination of ?nite element analysis on the boundary with these equations has led to very e?cient computational tools, the boundary element methods (see e.g., the authors [139] and Schanz and Steinbach (eds.) [267]). Although we do not deal with the boundary element discretizations in this book, the material presented here gives the mathematical foundation of these methods. In order to avoid over generalization we have con?ned ourselves to the treatment of elliptic boundary value problems. The central idea of eliminating the ?eld equations in the domain and - ducing boundary value problems to equivalent equations only on the bou- ary requires the knowledge of corresponding fundamental solutions, and this idea has a long history dating back to the work of Green [107] and Gauss [95, 96]. Today the resulting boundary integral equations still serve as a major tool for the analysis and construction of solutions to boundary value problems.