Boolean Differential Calculus

Download Boolean Differential Calculus PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Boolean Differential Calculus book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Boolean Differential Calculus

The Boolean Differential Calculus (BDC) is a very powerful theory that extends the basic concepts of Boolean Algebras significantly. Its applications are based on Boolean spaces and n, Boolean operations, and basic structures such as Boolean Algebras and Boolean Rings, Boolean functions, Boolean equations, Boolean inequalities, incompletely specified Boolean functions, and Boolean lattices of Boolean functions. These basics, sometimes also called switching theory, are widely used in many modern information processing applications. The BDC extends the known concepts and allows the consideration of changes of function values. Such changes can be explored for pairs of function values as well as for whole subspaces. The BDC defines a small number of derivative and differential operations. Many existing theorems are very welcome and allow new insights due to possible transformations of problems. The available operations of the BDC have been efficiently implemented in several software packages. The common use of the basic concepts and the BDC opens a very wide field of applications. The roots of the BDC go back to the practical problem of testing digital circuits. The BDC deals with changes of signals which are very important in applications of the analysis and the synthesis of digital circuits. The comprehensive evaluation and utilization of properties of Boolean functions allow, for instance, to decompose Boolean functions very efficiently; this can be applied not only in circuit design, but also in data mining. Other examples for the use of the BDC are the detection of hazards or cryptography. The knowledge of the BDC gives the scientists and engineers an extended insight into Boolean problems leading to new applications, e.g., the use of Boolean lattices of Boolean functions.
Boolean Differential Equations

The Boolean Differential Calculus (BDC) is a very powerful theory that extends the structure of a Boolean Algebra significantly. Based on a small number of definitions, many theorems have been proven. The available operations have been efficiently implemented in several software packages. There is a very wide field of applications. While a Boolean Algebra is focused on values of logic functions, the BDC allows the evaluation of changes of function values. Such changes can be explored for pairs of function values as well as for whole subspaces. Due to the same basic data structures, the BDC can be applied to any task described by logic functions and equations together with the Boolean Algebra. The BDC can be widely used for the analysis, synthesis, and testing of digital circuits. Generally speaking, a Boolean differential equation (BDE) is an equation in which elements of the BDC appear. It includes variables, functions, and derivative operations of these functions. The solution of such a BDE is a set of Boolean functions. This is a significant extension of Boolean equations, which have sets of Boolean vectors as solutions. In the simplest BDE a derivative operation of the BDC on the left-hand side is equal to a logic function on the right-hand side. The solution of such a simple BDE means to execute an operation which is inverse to the given derivative. BDEs can be applied in the same fields as the BDC, however, their possibility to express sets of Boolean functions extends the application field significantly.
Logic Functions and Equations

The expanded and updated 2nd edition of this classic text offers the reader a comprehensive introduction to the concepts of logic functions and equations and their applications across computer science. The approach emphasizes a thorough understanding of the fundamental principles as well as numerical and computer-based solution methods. Updated throughout, some major additions for the 2nd edition include: - an expanded introductory section on logic equations; - a new chapter on sets, lattices, and classes of logic functions; - a new chapter about SAT-problems; - a new chapter about methods to solve extremely complex problems; and - an expanded section with new decomposition methods utilizing the Boolean Differential Calculus extended to lattices of logic functions. The book provides insight into applications across binary arithmetic, coding, complexity, logic design, programming, computer architecture, and artificial intelligence. Based on the extensive teaching experience of the authors, Logic Functions and Equations is highly recommended for a one- or two-semester course in computer science and related programs. It provides straightforward high-level access to these methods and enables sophisticated applications, elegantly bridging the gap between mathematics and the theoretical foundations of computer science.