Block Trace Analysis And Storage System Optimization

Download Block Trace Analysis And Storage System Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Block Trace Analysis And Storage System Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Block Trace Analysis and Storage System Optimization

Understand the fundamental factors of data storage system performance and master an essential analytical skill using block trace via applications such as MATLAB and Python tools. You will increase your productivity and learn the best techniques for doing specific tasks (such as analyzing the IO pattern in a quantitative way, identifying the storage system bottleneck, and designing the cache policy). In the new era of IoT, big data, and cloud systems, better performance and higher density of storage systems has become crucial. To increase data storage density, new techniques have evolved and hybrid and parallel access techniques—together with specially designed IO scheduling and data migration algorithms—are being deployed to develop high-performance data storage solutions. Among the various storage system performance analysis techniques, IO event trace analysis (block-level trace analysis particularly) is one of the most common approaches for system optimization and design. However, the task of completing a systematic survey is challenging and very few works on this topic exist. Block Trace Analysis and Storage System Optimization brings together theoretical analysis (such as IO qualitative properties and quantitative metrics) and practical tools (such as trace parsing, analysis, and results reporting perspectives). The book provides content on block-level trace analysis techniques, and includes case studies to illustrate how these techniques and tools can be applied in real applications (such as SSHD, RAID, Hadoop, and Ceph systems). What You’ll Learn Understand the fundamental factors of data storage system performance Master an essential analytical skill using block trace via various applications Distinguish how the IO pattern differs in the block level from the file level Know how the sequential HDFS request becomes “fragmented” in final storage devices Perform trace analysis tasks with a tool based on the MATLAB and Python platforms Who This Book Is For IT professionals interested in storage system performance optimization: network administrators, data storage managers, data storage engineers, storage network engineers, systems engineers
Storage Systems

Author: Alexander Thomasian
language: en
Publisher: Academic Press
Release Date: 2021-10-13
Storage Systems: Organization, Performance, Coding, Reliability and Their Data Processing was motivated by the 1988 Redundant Array of Inexpensive/Independent Disks proposal to replace large form factor mainframe disks with an array of commodity disks. Disk loads are balanced by striping data into strips—with one strip per disk— and storage reliability is enhanced via replication or erasure coding, which at best dedicates k strips per stripe to tolerate k disk failures. Flash memories have resulted in a paradigm shift with Solid State Drives (SSDs) replacing Hard Disk Drives (HDDs) for high performance applications. RAID and Flash have resulted in the emergence of new storage companies, namely EMC, NetApp, SanDisk, and Purestorage, and a multibillion-dollar storage market. Key new conferences and publications are reviewed in this book.The goal of the book is to expose students, researchers, and IT professionals to the more important developments in storage systems, while covering the evolution of storage technologies, traditional and novel databases, and novel sources of data. We describe several prototypes: FAWN at CMU, RAMCloud at Stanford, and Lightstore at MIT; Oracle's Exadata, AWS' Aurora, Alibaba's PolarDB, Fungible Data Center; and author's paper designs for cloud storage, namely heterogeneous disk arrays and hierarchical RAID. - Surveys storage technologies and lists sources of data: measurements, text, audio, images, and video - Familiarizes with paradigms to improve performance: caching, prefetching, log-structured file systems, and merge-trees (LSMs) - Describes RAID organizations and analyzes their performance and reliability - Conserves storage via data compression, deduplication, compaction, and secures data via encryption - Specifies implications of storage technologies on performance and power consumption - Exemplifies database parallelism for big data, analytics, deep learning via multicore CPUs, GPUs, FPGAs, and ASICs, e.g., Google's Tensor Processing Units
Network and Parallel Computing

This book constitutes the proceedings of the 11th IFIP WG 10.3 International Conference on Network and Parallel Computing, NPC 2014, held in Ilan, Taiwan, in September 2014. The 42 full papers and 24 poster papers presented were carefully reviewed and selected from 196 submissions. They are organized in topical sections on systems, networks, and architectures, parallel and multi-core technologies, virtualization and cloud computing technologies, applications of parallel and distributed computing, and I/O, file systems, and data management.