Biorthogonal Systems In Banach Spaces

Download Biorthogonal Systems In Banach Spaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Biorthogonal Systems In Banach Spaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Biorthogonal Systems in Banach Spaces

Author: Petr Hajek
language: en
Publisher: Springer Science & Business Media
Release Date: 2007-10-04
This book introduces the reader to some of the basic concepts, results and applications of biorthogonal systems in infinite dimensional geometry of Banach spaces, and in topology and nonlinear analysis in Banach spaces. It achieves this in a manner accessible to graduate students and researchers who have a foundation in Banach space theory. The authors have included numerous exercises, as well as open problems that point to possible directions of research.
Open Problems in the Geometry and Analysis of Banach Spaces

This is an collection of some easily-formulated problems that remain open in the study of the geometry and analysis of Banach spaces. Assuming the reader has a working familiarity with the basic results of Banach space theory, the authors focus on concepts of basic linear geometry, convexity, approximation, optimization, differentiability, renormings, weak compact generating, Schauder bases and biorthogonal systems, fixed points, topology and nonlinear geometry. The main purpose of this work is to help in convincing young researchers in Functional Analysis that the theory of Banach spaces is a fertile field of research, full of interesting open problems. Inside the Banach space area, the text should help expose young researchers to the depth and breadth of the work that remains, and to provide the perspective necessary to choose a direction for further study. Some of the problems are longstanding open problems, some are recent, some are more important and some are only local problems. Some would require new ideas, some may be resolved with only a subtle combination of known facts. Regardless of their origin or longevity, each of these problems documents the need for further research in this area.