Biomedical Data Analysis And Processing Using Explainable Xai And Responsive Artificial Intelligence Rai

Download Biomedical Data Analysis And Processing Using Explainable Xai And Responsive Artificial Intelligence Rai PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Biomedical Data Analysis And Processing Using Explainable Xai And Responsive Artificial Intelligence Rai book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Biomedical Data Analysis and Processing Using Explainable (XAI) and Responsive Artificial Intelligence (RAI)

The book discusses Explainable (XAI) and Responsive Artificial Intelligence (RAI) for biomedical and healthcare applications. It will discuss the advantages in dealing with big and complex data by using explainable AI concepts in the field of biomedical sciences. The book explains both positive as well as negative findings obtained by explainable AI techniques. It features real time experiences by physicians and medical staff for applied deep learning based solutions. The book will be extremely useful for researchers and practitioners in advancing their studies.
Explainable Artificial Intelligence for Biomedical Applications

Since its first appearance, artificial intelligence has been ensuring revolutionary outcomes in the context of real-world problems. At this point, it has strong relations with biomedical and today’s intelligent systems compete with human capabilities in medical tasks. However, advanced use of artificial intelligence causes intelligent systems to be black-box. That situation is not good for building trustworthy intelligent systems in medical applications. For a remarkable amount of time, researchers have tried to solve the black-box issue by using modular additions, which have led to the rise of the term: interpretable artificial intelligence. As the literature matured (as a result of, in particular, deep learning), that term transformed into explainable artificial intelligence (XAI). This book provides an essential edited work regarding the latest advancements in explainable artificial intelligence (XAI) for biomedical applications. It includes not only introductive perspectives but also applied touches and discussions regarding critical problems as well as future insights. Topics discussed in the book include: XAI for the applications with medical images XAI use cases for alternative medical data/task Different XAI methods for biomedical applications Reviews for the XAI research for critical biomedical problems. Explainable Artificial Intelligence for Biomedical Applications is ideal for academicians, researchers, students, engineers, and experts from the fields of computer science, biomedical, medical, and health sciences. It also welcomes all readers of different fields to be informed about use cases of XAI in black-box artificial intelligence. In this sense, the book can be used for both teaching and reference source purposes.
Explainable Artificial Intelligence

This three-volume set constitutes the refereed proceedings of the First World Conference on Explainable Artificial Intelligence, xAI 2023, held in Lisbon, Portugal, in July 2023. The 94 papers presented were thoroughly reviewed and selected from the 220 qualified submissions. They are organized in the following topical sections: Part I: Interdisciplinary perspectives, approaches and strategies for xAI; Model-agnostic explanations, methods and techniques for xAI, Causality and Explainable AI; Explainable AI in Finance, cybersecurity, health-care and biomedicine. Part II: Surveys, benchmarks, visual representations and applications for xAI; xAI for decision-making and human-AI collaboration, for Machine Learning on Graphs with Ontologies and Graph Neural Networks; Actionable eXplainable AI, Semantics and explainability, and Explanations for Advice-Giving Systems. Part III: xAI for time series and Natural Language Processing; Human-centered explanations and xAI for Trustworthy and Responsible AI; Explainable and Interpretable AI with Argumentation, Representational Learning and concept extraction for xAI.