Biological Pattern Discovery With R Machine Learning Approaches


Download Biological Pattern Discovery With R Machine Learning Approaches PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Biological Pattern Discovery With R Machine Learning Approaches book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Biological Pattern Discovery With R: Machine Learning Approaches


Biological Pattern Discovery With R: Machine Learning Approaches

Author: Zheng Rong Yang

language: en

Publisher: World Scientific

Release Date: 2021-09-17


DOWNLOAD





This book provides the research directions for new or junior researchers who are going to use machine learning approaches for biological pattern discovery. The book was written based on the research experience of the author's several research projects in collaboration with biologists worldwide. The chapters are organised to address individual biological pattern discovery problems. For each subject, the research methodologies and the machine learning algorithms which can be employed are introduced and compared. Importantly, each chapter was written with the aim to help the readers to transfer their knowledge in theory to practical implementation smoothly. Therefore, the R programming environment was used for each subject in the chapters. The author hopes that this book can inspire new or junior researchers' interest in biological pattern discovery using machine learning algorithms.

Bio-kernel Machines And Applications


Bio-kernel Machines And Applications

Author: Zheng Rong Yang

language: en

Publisher: World Scientific

Release Date: 2024-03-06


DOWNLOAD





Due to its capability of handling very complex problems and its high flexibility in adapting to different algorithms, the kernel machine plays a crucial role in machine learning.Bio-Kernel Machines and Applications will introduce a new type of kernel machine for the exploration and modeling between the genotypic inherent structures of short protein sequences or nucleic sequences and the phenotypic biological properties or functions of proteins or nucleotides.The book seeks to establish the fundamentals of the bio-kernel machines by presenting the basic principle and theory of the kernel machine and the various formats of kernel machines, such as string kernel machines adapted for biological applications. The book will also introduce several biological applications of the mutation matrices, demonstrating how mutation matrices can enhance the efficiency and biological relevance of machine learning models applied in specific biological problems.Through analyzing current applications of bio-kernel machines, readers will delve into the advantages of the bio-kernel machines and explore how bio-kernel machines can be further enhanced to tackle a wide spectrum of biological challenges and pave the way for future advancements.

Data Analytics for Protein Crystallization


Data Analytics for Protein Crystallization

Author: Marc L. Pusey

language: en

Publisher: Springer

Release Date: 2017-11-27


DOWNLOAD





This unique text/reference presents an overview of the computational aspects of protein crystallization, describing how to build robotic high-throughput and crystallization analysis systems. The coverage encompasses the complete data analysis cycle, including the set-up of screens by analyzing prior crystallization trials, the classification of crystallization trial images by effective feature extraction, the analysis of crystal growth in time series images, the segmentation of crystal regions in images, the application of focal stacking methods for crystallization images, and the visualization of trials. Topics and features: describes the fundamentals of protein crystallization, and the scoring and categorization of crystallization image trials; introduces a selection of computational methods for protein crystallization screening, and the hardware and software architecture for a basic high-throughput system; presents an overview of the image features used in protein crystallization classification, and a spatio-temporal analysis of protein crystal growth; examines focal stacking techniques to avoid blurred crystallization images, and different thresholding methods for binarization or segmentation; discusses visualization methods and software for protein crystallization analysis, and reviews alternative methods to X-ray diffraction for obtaining structural information; provides an overview of the current challenges and potential future trends in protein crystallization. This interdisciplinary work serves as an essential reference on the computational and data analytics components of protein crystallization for the structural biology community, in addition to computer scientists wishing to enter the field of protein crystallization.