Biofilms From A Food Microbiology Perspective Structures Functions And Control Strategies


Download Biofilms From A Food Microbiology Perspective Structures Functions And Control Strategies PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Biofilms From A Food Microbiology Perspective Structures Functions And Control Strategies book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Biofilms from a Food Microbiology Perspective: Structures, Functions and Control Strategies


Biofilms from a Food Microbiology Perspective: Structures, Functions and Control Strategies

Author: Avelino Alvarez-Ordóñez

language: en

Publisher: Frontiers Media SA

Release Date: 2017-03-17


DOWNLOAD





Materials and equipment in food processing industries are colonized by surface-associated microbial communities called biofilms. In these biostructures microorganisms are embedded in a complex organic matrix composed essentially of polysaccharides, nucleic acids and proteins. This organic shield contributes to the mechanical biofilm cohesion and triggers tolerance to environmental stresses such as dehydratation or nutrient deprivation. Notably, cells within a biofilm are more tolerant to sanitation processes and the action of antimicrobial agents than their free living (or planktonic) counterparts. Such properties make conventional cleaning and disinfection protocols normally not effective in eradicating these biocontaminants. Biofilms are thus a continuous source of persistent microorganisms, including spoilage and pathogenic microorganisms, leading to repeated contamination of processed food with important economic and safety impact. Alternatively, in some particular settings, biofilm formation by resident or technological microorganisms can be desirable, due to possible enhancement of food fermentations or as a means of bioprotection against the settlement of pathogenic microorganisms. In the last decades substantial research efforts have been devoted to unravelling mechanisms of biofilm formation, deciphering biofilm architecture and understanding microbial interactions within those ecosystems. However, biofilms present a high level of complexity and many aspects remain yet to be fully understood. A lot of attention has been also paid to the development of novel strategies for preventing or controlling biofilm formation in industrial settings. Further research needs to be focused on the identification of new biocides effective against biofilm-associated microorganisms, the development of control strategies based on the inhibition of cell-to-cell communication, and the potential use of bacteriocins, bacteriocin-producing bacteria, phage, and natural antimicrobials as anti-biofilm agents, among others. This Research Topic aims to provide an avenue for dissemination of recent advances within the “biofilms” field, from novel knowledge on mechanisms of biofilm formation and biofilm architecture to novel strategies for biofilm control in food industrial settings.

Encyclopedia of Microbiology


Encyclopedia of Microbiology

Author: Thomas M. Schmidt

language: en

Publisher: Academic Press

Release Date: 2019-09-11


DOWNLOAD





Encyclopedia of Microbiology, Fourth Edition, Five Volume Set gathers both basic and applied dimensions in this dynamic field that includes virtually all environments on Earth. This range attracts a growing number of cross-disciplinary studies, which the encyclopedia makes available to readers from diverse educational backgrounds. The new edition builds on the solid foundation established in earlier versions, adding new material that reflects recent advances in the field. New focus areas include `Animal and Plant Microbiomes’ and ‘Global Impact of Microbes`. The thematic organization of the work allows users to focus on specific areas, e.g., for didactical purposes, while also browsing for topics in different areas. Offers an up-to-date and authoritative resource that covers the entire field of microbiology, from basic principles, to applied technologies Provides an organic overview that is useful to academic teachers and scientists from different backgrounds Includes chapters that are enriched with figures and graphs, and that can be easily consulted in isolation to find fundamental definitions and concepts

Omics Approaches in Biofilm Research


Omics Approaches in Biofilm Research

Author: Siddhardha Busi

language: en

Publisher: Springer Nature

Release Date: 2025-08-08


DOWNLOAD





The increased incidence of microorganisms' selective pressure to traditional antibiotics has led to the emergence of multi-drug resistance (MDR) phenomena and has become a global health issue with a catastrophic influence on millions of lives, as well as the global economy. The inherent tendency of pathogenic microorganisms to infer MDR could be attributed to their ability to form recalcitrant biofilm matrices. The biofilm matrix not only advocates chronic nosocomial infections, but also critically provides protection against environmental stress including antibiotic therapies. Biofilm-mediated MDR has posed a serious challenge to human well-being. Henceforth, it is important to understand the pathophysiology of biofilms and the concomitant development of diagnostic & therapeutic modalities to counteract biofilm-mediated chronic infections.The lack of understanding on biofilm biology has a critical negative influence on diagnostic and therapeutic efforts. Therefore, it is imperative to discover the right course of action to understand biofilm mechanics. The advent of Omics-based approaches has provided a holistic realization to understand biofilm ecology with special reference to the pathophysiological interactions of antibiotic-resistant genes, protein-protein interactions, and response-based interactions with therapeutic agents upon infection. The inherent ability of several Omics-based approaches has provided a comprehensive understanding of biofilm dynamics at various levels of organization such as genes, mRNA, proteins, and their regulation. Omics-based tools such as metagenomics, transcriptomics, proteomics, metabolomics, etc. have provided a new horizon to understand and tackle the biofilm-mediated antibiotic resistance. The integrated approach to consider multi-Omics tools (e.g. genomics, transcriptomics, proteomics, lipidomics, metabolomics, etc.) has further improved our understanding of the mechanisms associated with biofilm resistome profile. The applications of transcriptomics, proteomics, and metabolomics profiles of biofilm matrices could provide new dimensions in relation to the characteristic properties of different ARGs, their relative expression profiles, and their metabolic intervention in biofilm mechanics. Also, advanced integrated Phenomics, Lipidomics, and Culturomics approaches could provide novel avenues to understand the diverse range of biofilm phenotypes, their macromolecular reorganization profiles, and molecular tools for identification of microbial species in the complex biofilm microenvironment. Based on the advancement in omics-based tools, “Omics Approaches in Biofilm Research: Perspectives and Applications” integrates the current knowledge of biofilm microenvironment and innovative strategies to address biofilm mediated drug resistance. This work provides a comprehensive platform to enhance our knowledge, diagnosis and strategies to mitigate biofilms and associated diseases.