Bioengineering Fundamentals

Download Bioengineering Fundamentals PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Bioengineering Fundamentals book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Bioengineering Fundamentals

Combining engineering principles with technical rigor and a problem-solving focus, this guide takes an interdisciplinary approach to the conservation laws that form the foundation of bioengineering: mass, energy, charge, and momentum. Demonstrates how conservation laws (including conservation of mass and energy, momentum, and charge) apply to biological and medical systems to lay a foundation for beginning bioengineers. Allows readers to build a mental model of how key concepts in engineering, chemistry, and physics are interrelated. Emphasizes how accounting and conservation equations are used to derive familiar laws, such as Kirchhoff's current and voltage laws, Newton's laws of motions, Bernoulli's equation, and others. Extensive examples span the breadth of modern bioengineering, including physiology, biochemistry, tissue engineering, biotechnology, and instrumentation. For anyone interested in learning more about bioengineering.
Fundamental Bioengineering

A thorough introduction to the basics of bioengineering, with a focus on applications in the emerging "white" biotechnology industry. As such, this latest volume in the "Advanced Biotechnology" series covers the principles for the design and analysis of industrial bioprocesses as well as the design of bioremediation systems, and several biomedical applications. No fewer than seven chapters introduce stoichiometry, kinetics, thermodynamics and the design of ideal and real bioreactors, illustrated by more than 50 practical examples. Further chapters deal with the tools that enable an understanding of the behavior of cell cultures and enzymatically catalyzed reactions, while others discuss the analysis of cultures at the level of the cell, as well as structural frameworks for the successful scale-up of bioreactions. In addition, a short survey of downstream processing options and the control of bioreactions is given. With contributions from leading experts in industry and academia, this is a comprehensive source of information peer-reviewed by experts in the field.
Quantitative Fundamentals of Molecular and Cellular Bioengineering

A comprehensive presentation of essential topics for biological engineers, focusing on the development and application of dynamic models of biomolecular and cellular phenomena. This book describes the fundamental molecular and cellular events responsible for biological function, develops models to study biomolecular and cellular phenomena, and shows, with examples, how models are applied in the design and interpretation of experiments on biological systems. Integrating molecular cell biology with quantitative engineering analysis and design, it is the first textbook to offer a comprehensive presentation of these essential topics for chemical and biological engineering. The book systematically develops the concepts necessary to understand and study complex biological phenomena, moving from the simplest elements at the smallest scale and progressively adding complexity at the cellular organizational level, focusing on experimental testing of mechanistic hypotheses. After introducing the motivations for formulation of mathematical rate process models in biology, the text goes on to cover such topics as noncovalent binding interactions; quantitative descriptions of the transient, steady state, and equilibrium interactions of proteins and their ligands; enzyme kinetics; gene expression and protein trafficking; network dynamics; quantitative descriptions of growth dynamics; coupled transport and reaction; and discrete stochastic processes. The textbook is intended for advanced undergraduate and graduate courses in chemical engineering and bioengineering, and has been developed by the authors for classes they teach at MIT and the University of Minnesota.