Big Data With Hadoop Mapreduce

Download Big Data With Hadoop Mapreduce PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Big Data With Hadoop Mapreduce book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Big Data with Hadoop MapReduce

The authors provide an understanding of big data and MapReduce by clearly presenting the basic terminologies and concepts. They have employed over 100 illustrations and many worked-out examples to convey the concepts and methods used in big data, the inner workings of MapReduce, and single node/multi-node installation on physical/virtual machines. This book covers almost all the necessary information on Hadoop MapReduce for most online certification exams. Upon completing this book, readers will find it easy to understand other big data processing tools such as Spark, Storm, etc. Ultimately, readers will be able to: • understand what big data is and the factors that are involved • understand the inner workings of MapReduce, which is essential for certification exams • learn the features and weaknesses of MapReduce • set up Hadoop clusters with 100s of physical/virtual machines • create a virtual machine in AWS • write MapReduce with Eclipse in a simple way • understand other big data processing tools and their applications
Data-Intensive Text Processing with MapReduce

Author: Jimmy Lin
language: en
Publisher: Morgan & Claypool Publishers
Release Date: 2010-10-10
Our world is being revolutionized by data-driven methods: access to large amounts of data has generated new insights and opened exciting new opportunities in commerce, science, and computing applications. Processing the enormous quantities of data necessary for these advances requires large clusters, making distributed computing paradigms more crucial than ever. MapReduce is a programming model for expressing distributed computations on massive datasets and an execution framework for large-scale data processing on clusters of commodity servers. The programming model provides an easy-to-understand abstraction for designing scalable algorithms, while the execution framework transparently handles many system-level details, ranging from scheduling to synchronization to fault tolerance. This book focuses on MapReduce algorithm design, with an emphasis on text processing algorithms common in natural language processing, information retrieval, and machine learning. We introduce the notion of MapReduce design patterns, which represent general reusable solutions to commonly occurring problems across a variety of problem domains. This book not only intends to help the reader "think in MapReduce", but also discusses limitations of the programming model as well. Table of Contents: Introduction / MapReduce Basics / MapReduce Algorithm Design / Inverted Indexing for Text Retrieval / Graph Algorithms / EM Algorithms for Text Processing / Closing Remarks