Big Data Analytics With Neural Networks Using Matlab


Download Big Data Analytics With Neural Networks Using Matlab PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Big Data Analytics With Neural Networks Using Matlab book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Big Data Analytics with Neural Networks Using MATLAB


Big Data Analytics with Neural Networks Using MATLAB

Author: J. Smith

language: en

Publisher: Createspace Independent Publishing Platform

Release Date: 2017-02-26


DOWNLOAD





Big data analytics is the process of collecting, organizing and analyzing large sets of data (called big data) to discover patterns and other useful information. Big data analytics can help organizations to better understand the information contained within the data and will also help identify the data that is most important to the business and future business decisions. Analysts working with big data basically want the knowledge that comes from analyzing the data. To analyze such a large volume of data, big data analytics is typically performed using specialized software tools and applications for predictive analytics, data mining, text mining, forecasting and data optimization. Collectively these processes are separate but highly integrated functions of high-performance analytics. Using big data tools and software enables an organization to process extremely large volumes of data that a business has collected to determine which data is relevant and can be analyzed to drive better business decisions in the future. Among all these tools highlights MATLAB. MATLAB implements various toolboxes for working on big data analytics, such as Statistics Toolbox and Neural Network Toolbox. This book develops Big Data Analytics applications using MATLAB Neural Network Toolboox. The toolbox includes convolutional neural network and autoencoder deep learning algorithms for image classification and feature learning tasks. To speed up training of large data sets, you can distribute computations and data across multicore processors, GPUs, and computer clusters using Parallel Computing Toolbox. The more important features are the following: - Deep learning, including convolutional neural networks and autoencoders - Parallel computing and GPU support for accelerating training (with Parallel Computing Toolbox) - Supervised learning algorithms, including multilayer, radial basis, learning vector quantization (LVQ), time-delay, nonlinear autoregressive (NARX), and recurrent neural network (RNN) - Unsupervised learning algorithms, including self-organizing maps and competitive layers - Apps for data-fitting, pattern recognition, and clustering - Preprocessing, postprocessing, and network visualization for improving training efficiency and assessing network performance - Simulink(R) blocks for building and evaluating neural networks and for control systems applications Neural networks are composed of simple elements operating in parallel. These elements are inspired by biological nervous systems. As in nature, the connections between elements largely determine the network function. You can train a neural network to perform a particular function by adjusting the values of the connections (weights) between elements.

BIG DATA ANALYTICS: NEURAL NETWORKS APPLICATIONS. EXAMPLES WITH MATLAB


BIG DATA ANALYTICS: NEURAL NETWORKS APPLICATIONS. EXAMPLES WITH MATLAB

Author: CESAR PEREZ LOPEZ

language: en

Publisher: CESAR PEREZ

Release Date: 2020-05-31


DOWNLOAD





MATLAB has the tool Neural Network Toolbox (Deep Learning Toolbox since release 18) that provides algorithms, functions, and apps to create, train, visualize, and simulate neural networks. You can perform classification, regression, clustering, dimensionality reduction, time-series forecasting, and dynamic system modeling and control. The toolbox includes convolutional neural network and autoencoder deep learning algorithms for image classification and feature learning tasks. To speed up training of large data sets, you can distribute computations and data across multicore processors, GPUs, and computer clusters using Parallel Computing Toolbox. This book develops neural network applications using MATLAB.

DATA MINING and BIG DATA ANALYTICS with NEURAL NETWORKS Using MATLAB


DATA MINING and BIG DATA ANALYTICS with NEURAL NETWORKS Using MATLAB

Author: C Perez

language: en

Publisher: Independently Published

Release Date: 2019-05-22


DOWNLOAD





The availability of large volumes of data (Big Data) and the generalized use of computer tools has transformed research and data analysis, orienting it towards certain specialized techniques encompassed under the generic name of Analytics (Big Data Analytics) that includes Multivariate Data Analysis (MDA), Data Mining and other Business Intelligence techniques.Data Mining can be defined as a process of discovering new and significant relationships, patterns and trends when examining large amounts of data. The techniques of Data Mining pursue the automatic discovery of the knowledge contained in the information stored in an orderly manner in large databases. These techniques aim to discover patterns, profiles and trends through the analysis of data using advanced statistical techniques of multivariate data analysis.The goal is to allow the researcher-analyst to find a useful solution to the problem raised through a better understanding of the existing data.Data Mining uses two types of techniques: predictive techniques, which trains a model on known input and output data so that it can predict future outputs, and descriptive techniques, which finds hidden patterns or intrinsic structures in input data.