Bifurcations In Piecewise Smooth Continuous Systems

Download Bifurcations In Piecewise Smooth Continuous Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Bifurcations In Piecewise Smooth Continuous Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Bifurcations In Piecewise-smooth Continuous Systems

Author: David John Warwick Simpson
language: en
Publisher: World Scientific
Release Date: 2010-01-13
Real-world systems that involve some non-smooth change are often well-modeled by piecewise-smooth systems. However there still remain many gaps in the mathematical theory of such systems. This doctoral thesis presents new results regarding bifurcations of piecewise-smooth, continuous, autonomous systems of ordinary differential equations and maps. Various codimension-two, discontinuity induced bifurcations are unfolded in a rigorous manner. Several of these unfoldings are applied to a mathematical model of the growth of Saccharomyces cerevisiae (a common yeast). The nature of resonance near border-collision bifurcations is described; in particular, the curious geometry of resonance tongues in piecewise-smooth continuous maps is explained in detail.Neimark-Sacker-like border-collision bifurcations are both numerically and theoretically investigated. A comprehensive background section is conveniently provided for those with little or no experience in piecewise-smooth systems.
Bifurcations in Piecewise-smooth Continuous Systems

Author: David John Warwick Simpson
language: en
Publisher: World Scientific
Release Date: 2010
Real-world systems that involve some non-smooth change are often well-modeled by piecewise-smooth systems. However there still remain many gaps in the mathematical theory of such systems. This doctoral thesis presents new results regarding bifurcations of piecewise-smooth, continuous, autonomous systems of ordinary differential equations and maps. Various codimension-two, discontinuity induced bifurcations are unfolded in a rigorous manner. Several of these unfoldings are applied to a mathematical model of the growth of Saccharomyces cerevisiae (a common yeast). The nature of resonance near border-collision bifurcations is described; in particular, the curious geometry of resonance tongues in piecewise-smooth continuous maps is explained in detail. NeimarkSacker-like border-collision bifurcations are both numerically and theoretically investigated. A comprehensive background section is conveniently provided for those with little or no experience in piecewise-smooth systems.
Continuous And Discontinuous Piecewise-smooth One-dimensional Maps: Invariant Sets And Bifurcation Structures

The investigation of dynamics of piecewise-smooth maps is both intriguing from the mathematical point of view and important for applications in various fields, ranging from mechanical and electrical engineering up to financial markets. In this book, we review the attracting and repelling invariant sets of continuous and discontinuous one-dimensional piecewise-smooth maps. We describe the bifurcations occurring in these maps (border collision and degenerate bifurcations, as well as homoclinic bifurcations and the related transformations of chaotic attractors) and survey the basic scenarios and structures involving these bifurcations. In particular, the bifurcation structures in the skew tent map and its application as a border collision normal form are discussed. We describe the period adding and incrementing bifurcation structures in the domain of regular dynamics of a discontinuous piecewise-linear map, and the related bandcount adding and incrementing structures in the domain of robust chaos. Also, we explain how these structures originate from particular codimension-two bifurcation points which act as organizing centers. In addition, we present the map replacement technique which provides a powerful tool for the description of bifurcation structures in piecewise-linear and other form of invariant maps to a much further extent than the other approaches.