Beyond Big Data

Download Beyond Big Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Beyond Big Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Beyond Big Data

Drive Powerful Business Value by Extending MDM to Social, Mobile, Local, and Transactional Data Enterprises have long relied on Master Data Management (MDM) to improve customer-related processes. But MDM was designed primarily for structured data. Today, crucial information is increasingly captured in unstructured, transactional, and social formats: from tweets and Facebook posts to call center transcripts. Even with tools like Hadoop, extracting usable insight is difficult—often, because it’s so difficult to integrate new and legacy data sources. In Beyond Big Data, five of IBM’s leading data management experts introduce powerful new ways to integrate social, mobile, location, and traditional data. Drawing on pioneering experience with IBM’s enterprise customers, they show how Social MDM can help you deepen relationships, improve prospect targeting, and fully engage customers through mobile channels. Business leaders and practitioners will discover powerful new ways to combine social and master data to improve performance and uncover new opportunities. Architects and other technical leaders will find a complete reference architecture, in-depth coverage of relevant technologies and use cases, and domain-specific best practices for their own projects. Coverage Includes How Social MDM extends fundamental MDM concepts and techniques Architecting Social MDM: components, functions, layers, and interactions Identifying high value relationships: person to product and person to organization Mapping Social MDM architecture to specific products and technologies Using Social MDM to create more compelling customer experiences Accelerating your transition to highly-targeted, contextual marketing Incorporating mobile data to improve employee productivity Avoiding privacy and ethical pitfalls throughout your ecosystem Previewing Semantic MDM and other emerging trends
Intelligence in Big Data Technologies—Beyond the Hype

This book is a compendium of the proceedings of the International Conference on Big-Data and Cloud Computing. The papers discuss the recent advances in the areas of big data analytics, data analytics in cloud, smart cities and grid, etc. This volume primarily focuses on the application of knowledge which promotes ideas for solving problems of the society through cutting-edge big-data technologies. The essays featured in this proceeding provide novel ideas that contribute for the growth of world class research and development. It will be useful to researchers in the area of advanced engineering sciences.
Big Data Analytics Beyond Hadoop

Author: Vijay Srinivas Agneeswaran
language: en
Publisher: FT Press
Release Date: 2014-05-15
Master alternative Big Data technologies that can do what Hadoop can't: real-time analytics and iterative machine learning. When most technical professionals think of Big Data analytics today, they think of Hadoop. But there are many cutting-edge applications that Hadoop isn't well suited for, especially real-time analytics and contexts requiring the use of iterative machine learning algorithms. Fortunately, several powerful new technologies have been developed specifically for use cases such as these. Big Data Analytics Beyond Hadoop is the first guide specifically designed to help you take the next steps beyond Hadoop. Dr. Vijay Srinivas Agneeswaran introduces the breakthrough Berkeley Data Analysis Stack (BDAS) in detail, including its motivation, design, architecture, Mesos cluster management, performance, and more. He presents realistic use cases and up-to-date example code for: Spark, the next generation in-memory computing technology from UC Berkeley Storm, the parallel real-time Big Data analytics technology from Twitter GraphLab, the next-generation graph processing paradigm from CMU and the University of Washington (with comparisons to alternatives such as Pregel and Piccolo) Halo also offers architectural and design guidance and code sketches for scaling machine learning algorithms to Big Data, and then realizing them in real-time. He concludes by previewing emerging trends, including real-time video analytics, SDNs, and even Big Data governance, security, and privacy issues. He identifies intriguing startups and new research possibilities, including BDAS extensions and cutting-edge model-driven analytics. Big Data Analytics Beyond Hadoop is an indispensable resource for everyone who wants to reach the cutting edge of Big Data analytics, and stay there: practitioners, architects, programmers, data scientists, researchers, startup entrepreneurs, and advanced students.