Best Image Processing Library


Download Best Image Processing Library PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Best Image Processing Library book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Data Augmentation with Python


Data Augmentation with Python

Author: Duc Haba

language: en

Publisher: Packt Publishing Ltd

Release Date: 2023-04-28


DOWNLOAD





Boost your AI and generative AI accuracy using real-world datasets with over 150 functional object-oriented methods and open source libraries Purchase of the print or Kindle book includes a free PDF eBook Key Features Explore beautiful, customized charts and infographics in full color Work with fully functional OO code using open source libraries in the Python Notebook for each chapter Unleash the potential of real-world datasets with practical data augmentation techniques Book Description Data is paramount in AI projects, especially for deep learning and generative AI, as forecasting accuracy relies on input datasets being robust. Acquiring additional data through traditional methods can be challenging, expensive, and impractical, and data augmentation offers an economical option to extend the dataset. The book teaches you over 20 geometric, photometric, and random erasing augmentation methods using seven real-world datasets for image classification and segmentation. You'll also review eight image augmentation open source libraries, write object-oriented programming (OOP) wrapper functions in Python Notebooks, view color image augmentation effects, analyze safe levels and biases, as well as explore fun facts and take on fun challenges. As you advance, you'll discover over 20 character and word techniques for text augmentation using two real-world datasets and excerpts from four classic books. The chapter on advanced text augmentation uses machine learning to extend the text dataset, such as Transformer, Word2vec, BERT, GPT-2, and others. While chapters on audio and tabular data have real-world data, open source libraries, amazing custom plots, and Python Notebook, along with fun facts and challenges. By the end of this book, you will be proficient in image, text, audio, and tabular data augmentation techniques. What you will learn Write OOP Python code for image, text, audio, and tabular data Access over 150,000 real-world datasets from the Kaggle website Analyze biases and safe parameters for each augmentation method Visualize data using standard and exotic plots in color Discover 32 advanced open source augmentation libraries Explore machine learning models, such as BERT and Transformer Meet Pluto, an imaginary digital coding companion Extend your learning with fun facts and fun challenges Who this book is for This book is for data scientists and students interested in the AI discipline. Advanced AI or deep learning skills are not required; however, knowledge of Python programming and familiarity with Jupyter Notebooks are essential to understanding the topics covered in this book.

Intelligent Imaging and Analysis


Intelligent Imaging and Analysis

Author: DaeEun Kim

language: en

Publisher: MDPI

Release Date: 2020-03-05


DOWNLOAD





Imaging and analysis are widely involved in various research fields, including biomedical applications, medical imaging and diagnosis, computer vision, autonomous driving, and robot controls. Imaging and analysis are now facing big changes regarding intelligence, due to the breakthroughs of artificial intelligence techniques, including deep learning. Many difficulties in image generation, reconstruction, de-noising skills, artifact removal, segmentation, detection, and control tasks are being overcome with the help of advanced artificial intelligence approaches. This Special Issue focuses on the latest developments of learning-based intelligent imaging techniques and subsequent analyses, which include photographic imaging, medical imaging, detection, segmentation, medical diagnosis, computer vision, and vision-based robot control. These latest technological developments will be shared through this Special Issue for the various researchers who are involved with imaging itself, or are using image data and analysis for their own specific purposes.

Advances in Visual Computing


Advances in Visual Computing

Author: George Bebis

language: en

Publisher: Springer

Release Date: 2016-12-09


DOWNLOAD





The two volume set LNCS 10072 and LNCS 10073 constitutes the refereed proceedings of the 12th International Symposium on Visual Computing, ISVC 2016, held in Las Vegas, NV, USA in December 2016. The 102 revised full papers and 34 poster papers presented in this book were carefully reviewed and selected from 220 submissions. The papers are organized in topical sections: Part I (LNCS 10072) comprises computational bioimaging; computer graphics; motion and tracking; segmentation; pattern recognition; visualization; 3D mapping; modeling and surface reconstruction; advancing autonomy for aerial robotics; medical imaging; virtual reality; computer vision as a service; visual perception and robotic systems; and biometrics. Part II (LNCS 9475): applications; visual surveillance; computer graphics; and virtual reality.