Beginning With Deep Learning Using Tensorflow

Download Beginning With Deep Learning Using Tensorflow PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Beginning With Deep Learning Using Tensorflow book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Beginning with Deep Learning Using TensorFlow

Author: Mohan Kumar Silaparasetty
language: en
Publisher: BPB Publications
Release Date: 2022-02-09
A Practicing Guide to TensorFlow and Deep Learning KEY FEATURES ● Equipped with a necessary introduction to Deep Learning and AI. ● Includes demos and templates to give your projects a good start. ● Find more on the most important facets of AI, image, and speech recognition. DESCRIPTION This book begins with the configuration of an Anaconda development environment, essential for practicing the deep learning process. The basics of machine learning, which are needed for Deep Learning, are explained in this book. TensorFlow is the industry-standard library for Deep Learning, and thereby, it is covered extensively with both versions, 1.x and 2.x. As neural networks are the heart of Deep Learning, the book explains them in great detail and systematic fashion, beginning with a single neuron and progressing through deep multilayer neural networks. The emphasis of this book is on the practical application of key concepts rather than going in-depth with them. After establishing a firm basis in TensorFlow and Neural Networks, the book explains the concepts of image recognition using Convolutional Neural Networks (CNN), followed by speech recognition, and natural language processing (NLP). Additionally, this book discusses Transformers, the most recent advancement in NLP. WHAT YOU WILL LEARN ● Create machine learning models for classification and regression. ● Utilize TensorFlow 1.x to implement neural networks. ● Work with the Keras API and TensorFlow 2. ● Learn to design and train image categorization models. ● Construct translation and Q & A apps using transformer-based language models. WHO THIS BOOK IS FOR This book is intended for those new to Deep Learning who want to learn about its principles and applications. Before you begin, you'll need to be familiar with Python. TABLE OF CONTENTS 1. Introduction to Artificial Intelligence 2. Machine Learning 3. TensorFlow Programming 4. Neural Networks 5. TensorFlow 2 6. Image Recognition 7. Speech Recognition
Deep Learning Projects Using TensorFlow 2

Work through engaging and practical deep learning projects using TensorFlow 2.0. Using a hands-on approach, the projects in this book will lead new programmers through the basics into developing practical deep learning applications. Deep learning is quickly integrating itself into the technology landscape. Its applications range from applicable data science to deep fakes and so much more. It is crucial for aspiring data scientists or those who want to enter the field of AI to understand deep learning concepts. The best way to learn is by doing. You'll develop a working knowledge of not only TensorFlow, but also related technologies such as Python and Keras. You'll also work with Neural Networks and other deep learning concepts. By the end of the book, you'll have a collection of unique projects that you can add to your GitHub profiles and expand on for professional application. What You'll Learn Grasp the basic process of neural networks through projects, such as creating music Restore and colorize black and white images with deep learning processes Who This Book Is For Beginners new to TensorFlow and Python.
Learning TensorFlow

Roughly inspired by the human brain, deep neural networks trained with large amounts of data can solve complex tasks with unprecedented accuracy. This practical book provides an end-to-end guide to TensorFlow, the leading open source software library that helps you build and train neural networks for computer vision, natural language processing (NLP), speech recognition, and general predictive analytics. Authors Tom Hope, Yehezkel Resheff, and Itay Lieder provide a hands-on approach to TensorFlow fundamentals for a broad technical audience—from data scientists and engineers to students and researchers. You’ll begin by working through some basic examples in TensorFlow before diving deeper into topics such as neural network architectures, TensorBoard visualization, TensorFlow abstraction libraries, and multithreaded input pipelines. Once you finish this book, you’ll know how to build and deploy production-ready deep learning systems in TensorFlow. Get up and running with TensorFlow, rapidly and painlessly Learn how to use TensorFlow to build deep learning models from the ground up Train popular deep learning models for computer vision and NLP Use extensive abstraction libraries to make development easier and faster Learn how to scale TensorFlow, and use clusters to distribute model training Deploy TensorFlow in a production setting