Beginning Statistics With Data Analysis


Download Beginning Statistics With Data Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Beginning Statistics With Data Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Beginning Statistics with Data Analysis


Beginning Statistics with Data Analysis

Author: Frederick Mosteller

language: en

Publisher: Courier Corporation

Release Date: 2013-11-20


DOWNLOAD





This introduction to the world of statistics covers exploratory data analysis, methods for collecting data, formal statistical inference, and techniques of regression and analysis of variance. 1983 edition.

Introduction to Statistics and Data Analysis


Introduction to Statistics and Data Analysis

Author: Christian Heumann

language: en

Publisher: Springer Nature

Release Date: 2023-01-30


DOWNLOAD





Now in its second edition, this introductory statistics textbook conveys the essential concepts and tools needed to develop and nurture statistical thinking. It presents descriptive, inductive and explorative statistical methods and guides the reader through the process of quantitative data analysis. This revised and extended edition features new chapters on logistic regression, simple random sampling, including bootstrapping, and causal inference. The text is primarily intended for undergraduate students in disciplines such as business administration, the social sciences, medicine, politics, and macroeconomics. It features a wealth of examples, exercises and solutions with computer code in the statistical programming language R, as well as supplementary material that will enable the reader to quickly adapt the methods to their own applications.

An Introduction to Statistical Learning


An Introduction to Statistical Learning

Author: Gareth James

language: en

Publisher: Springer Nature

Release Date: 2023-06-30


DOWNLOAD





An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.