Bayesian Modeling Of Uncertainty In Low Level Vision

Download Bayesian Modeling Of Uncertainty In Low Level Vision PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Bayesian Modeling Of Uncertainty In Low Level Vision book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Bayesian Modeling of Uncertainty in Low-Level Vision

Author: Richard Szeliski
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Vision has to deal with uncertainty. The sensors are noisy, the prior knowledge is uncertain or inaccurate, and the problems of recovering scene information from images are often ill-posed or underconstrained. This research monograph, which is based on Richard Szeliski's Ph.D. dissertation at Carnegie Mellon University, presents a Bayesian model for representing and processing uncertainty in low level vision. Recently, probabilistic models have been proposed and used in vision. Sze liski's method has a few distinguishing features that make this monograph im portant and attractive. First, he presents a systematic Bayesian probabilistic estimation framework in which we can define and compute the prior model, the sensor model, and the posterior model. Second, his method represents and computes explicitly not only the best estimates but also the level of uncertainty of those estimates using second order statistics, i.e., the variance and covariance. Third, the algorithms developed are computationally tractable for dense fields, such as depth maps constructed from stereo or range finder data, rather than just sparse data sets. Finally, Szeliski demonstrates successful applications of the method to several real world problems, including the generation of fractal surfaces, motion estimation without correspondence using sparse range data, and incremental depth from motion.
Bayesian Modeling of Uncertainty in Low-Level Vision

Vision has to deal with uncertainty. The sensors are noisy, the prior knowledge is uncertain or inaccurate, and the problems of recovering scene information from images are often ill-posed or underconstrained. This research monograph, which is based on Richard Szeliski's Ph.D. dissertation at Carnegie Mellon University, presents a Bayesian model for representing and processing uncertainty in low level vision. Recently, probabilistic models have been proposed and used in vision. Sze liski's method has a few distinguishing features that make this monograph im portant and attractive. First, he presents a systematic Bayesian probabilistic estimation framework in which we can define and compute the prior model, the sensor model, and the posterior model. Second, his method represents and computes explicitly not only the best estimates but also the level of uncertainty of those estimates using second order statistics, i.e., the variance and covariance. Third, the algorithms developed are computationally tractable for dense fields, such as depth maps constructed from stereo or range finder data, rather than just sparse data sets. Finally, Szeliski demonstrates successful applications of the method to several real world problems, including the generation of fractal surfaces, motion estimation without correspondence using sparse range data, and incremental depth from motion.
BMVC92

Author: David Hogg
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
This book contains the 61 papers that were accepted for presenta tion at the 1992 British Machine Vision Conference. Together they provide a snapshot of current machine vision research throughout the UK in 24 different institutions. There are also several papers from vision groups in the rest of Europe, North America and Australia. At the start of the book is an invited paper from the first keynote speaker, Robert Haralick. The quality of papers submitted to the conference was very high and the programme committee had a hard task selecting around half for presentation at the meeting and inclusion in these proceedings. It is a positive feature of the annual BMV A conference that the entire process from the submission deadline through to the conference itself and publication of the proceedings is completed in under 5 months. My thanks to members of the programme committee for their essential contribution to the success of the conference and to Roger Boyle, Charlie Brown, Nick Efford and Sue Nemes for their excellent local organisation and administration of the conference at the University of Leeds.