Bayesian Methods For Interaction And Design


Download Bayesian Methods For Interaction And Design PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Bayesian Methods For Interaction And Design book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Bayesian Methods for Interaction and Design


Bayesian Methods for Interaction and Design

Author: John H. Williamson

language: en

Publisher: Cambridge University Press

Release Date: 2022-08-25


DOWNLOAD





Intended for researchers and practitioners in interaction design, this book shows how Bayesian models can be brought to bear on problems of interface design and user modelling. It introduces and motivates Bayesian modelling and illustrates how powerful these ideas can be in thinking about human-computer interaction, especially in representing and manipulating uncertainty. Bayesian methods are increasingly practical as computational tools to implement them become more widely available, and offer a principled foundation to reason about interaction design. The book opens with a self-contained tutorial on Bayesian concepts and their practical implementation, tailored for the background and needs of interaction designers. The contributed chapters cover the use of Bayesian probabilistic modelling in a diverse set of applications, including improving pointing-based interfaces; efficient text entry using modern language models; advanced interface design using cutting-edge techniques in Bayesian optimisation; and Bayesian approaches to modelling the cognitive processes of users.

Bayesian Methods for Interaction and Design


Bayesian Methods for Interaction and Design

Author: John H. Williamson

language: en

Publisher: Cambridge University Press

Release Date: 2022-08-25


DOWNLOAD





Introduces Bayesian methods and their implementation in application ranging from pointing-based interfaces to modelling cognitive processes.

Bayesian Data Analysis, Third Edition


Bayesian Data Analysis, Third Edition

Author: Andrew Gelman

language: en

Publisher: CRC Press

Release Date: 2013-11-01


DOWNLOAD





Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.