Bayesian Estimation And Inference In Computational Anatomy And Neuroimaging Methods Applications

Download Bayesian Estimation And Inference In Computational Anatomy And Neuroimaging Methods Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Bayesian Estimation And Inference In Computational Anatomy And Neuroimaging Methods Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Bayesian Estimation and Inference in Computational Anatomy and Neuroimaging: Methods & Applications

Computational Anatomy (CA) is an emerging discipline aiming to understand anatomy by utilizing a comprehensive set of mathematical tools. CA focuses on providing precise statistical encodings of anatomy with direct application to a broad range of biological and medical settings. During the past two decades, there has been an ever-increasing pace in the development of neuroimaging techniques, delivering in vivo information on the anatomy and physiological signals of different human organs through a variety of imaging modalities such as MRI, x-ray, CT, and PET. These multi-modality medical images provide valuable data for accurate interpretation and estimation of various biological parameters such as anatomical labels, disease types, cognitive states, functional connectivity between distinct anatomical regions, as well as activation responses to specific stimuli. In the era of big neuroimaging data, Bayes’ theorem provides a powerful tool to deliver statistical conclusions by combining the current information and prior experience. When sufficiently good data is available, Bayes’ theorem can utilize it fully and provide statistical inferences/estimations with the least error rate. Bayes’ theorem arose roughly three hundred years ago and has seen extensive application in many fields of science and technology, including recent neuroimaging, ever since. The last fifteen years have seen a great deal of success in the application of Bayes’ theorem to the field of CA and neuroimaging. That said, given that the power and success of Bayes’ rule largely depends on the validity of its probabilistic inputs, it is still a challenge to perform Bayesian estimation and inference on the typically noisy neuroimaging data of the real world. We assembled contributions focusing on recent developments in CA and neuroimaging through Bayesian estimation and inference, in terms of both methodologies and applications. It is anticipated that the articles in this Research Topic will provide a greater insight into the field of Bayesian imaging analysis.
Brain Mapping

Brain Mapping: A Comprehensive Reference, Three Volume Set offers foundational information for students and researchers across neuroscience. With over 300 articles and a media rich environment, this resource provides exhaustive coverage of the methods and systems involved in brain mapping, fully links the data to disease (presenting side by side maps of healthy and diseased brains for direct comparisons), and offers data sets and fully annotated color images. Each entry is built on a layered approach of the content – basic information for those new to the area and more detailed material for experienced readers. Edited and authored by the leading experts in the field, this work offers the most reputable, easily searchable content with cross referencing across articles, a one-stop reference for students, researchers and teaching faculty. Broad overview of neuroimaging concepts with applications across the neurosciences and biomedical research Fully annotated color images and videos for best comprehension of concepts Layered content for readers of different levels of expertise Easily searchable entries for quick access of reputable information Live reference links to ScienceDirect, Scopus and PubMed
Statistical Parametric Mapping: The Analysis of Functional Brain Images

In an age where the amount of data collected from brain imaging is increasing constantly, it is of critical importance to analyse those data within an accepted framework to ensure proper integration and comparison of the information collected. This book describes the ideas and procedures that underlie the analysis of signals produced by the brain. The aim is to understand how the brain works, in terms of its functional architecture and dynamics. This book provides the background and methodology for the analysis of all types of brain imaging data, from functional magnetic resonance imaging to magnetoencephalography. Critically, Statistical Parametric Mapping provides a widely accepted conceptual framework which allows treatment of all these different modalities. This rests on an understanding of the brain's functional anatomy and the way that measured signals are caused experimentally. The book takes the reader from the basic concepts underlying the analysis of neuroimaging data to cutting edge approaches that would be difficult to find in any other source. Critically, the material is presented in an incremental way so that the reader can understand the precedents for each new development. This book will be particularly useful to neuroscientists engaged in any form of brain mapping; who have to contend with the real-world problems of data analysis and understanding the techniques they are using. It is primarily a scientific treatment and a didactic introduction to the analysis of brain imaging data. It can be used as both a textbook for students and scientists starting to use the techniques, as well as a reference for practicing neuroscientists. The book also serves as a companion to the software packages that have been developed for brain imaging data analysis. - An essential reference and companion for users of the SPM software - Provides a complete description of the concepts and procedures entailed by the analysis of brain images - Offers full didactic treatment of the basic mathematics behind the analysis of brain imaging data - Stands as a compendium of all the advances in neuroimaging data analysis over the past decade - Adopts an easy to understand and incremental approach that takes the reader from basic statistics to state of the art approaches such as Variational Bayes - Structured treatment of data analysis issues that links different modalities and models - Includes a series of appendices and tutorial-style chapters that makes even the most sophisticated approaches accessible