Bayesian Data Analysis For Animal Scientists

Download Bayesian Data Analysis For Animal Scientists PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Bayesian Data Analysis For Animal Scientists book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Bayesian Data Analysis for Animal Scientists

In this book, we provide an easy introduction to Bayesian inference using MCMC techniques, making most topics intuitively reasonable and deriving to appendixes the more complicated matters. The biologist or the agricultural researcher does not normally have a background in Bayesian statistics, having difficulties in following the technical books introducing Bayesian techniques. The difficulties arise from the way of making inferences, which is completely different in the Bayesian school, and from the difficulties in understanding complicated matters such as the MCMC numerical methods. We compare both schools, classic and Bayesian, underlying the advantages of Bayesian solutions, and proposing inferences based in relevant differences, guaranteed values, probabilities of similitude or the use of ratios. We also give a scope of complex problems that can be solved using Bayesian statistics, and we end the book explaining the difficulties associated to model choice and the use of small samples. The book has a practical orientation and uses simple models to introduce the reader in this increasingly popular school of inference.
Doing Bayesian Data Analysis

Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, Second Edition provides an accessible approach for conducting Bayesian data analysis, as material is explained clearly with concrete examples. Included are step-by-step instructions on how to carry out Bayesian data analyses in the popular and free software R and WinBugs, as well as new programs in JAGS and Stan. The new programs are designed to be much easier to use than the scripts in the first edition. In particular, there are now compact high-level scripts that make it easy to run the programs on your own data sets. The book is divided into three parts and begins with the basics: models, probability, Bayes' rule, and the R programming language. The discussion then moves to the fundamentals applied to inferring a binomial probability, before concluding with chapters on the generalized linear model. Topics include metric-predicted variable on one or two groups; metric-predicted variable with one metric predictor; metric-predicted variable with multiple metric predictors; metric-predicted variable with one nominal predictor; and metric-predicted variable with multiple nominal predictors. The exercises found in the text have explicit purposes and guidelines for accomplishment. This book is intended for first-year graduate students or advanced undergraduates in statistics, data analysis, psychology, cognitive science, social sciences, clinical sciences, and consumer sciences in business. - Accessible, including the basics of essential concepts of probability and random sampling - Examples with R programming language and JAGS software - Comprehensive coverage of all scenarios addressed by non-Bayesian textbooks: t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis) - Coverage of experiment planning - R and JAGS computer programming code on website - Exercises have explicit purposes and guidelines for accomplishment - Provides step-by-step instructions on how to conduct Bayesian data analyses in the popular and free software R and WinBugs
Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics

Author: Daniel Sorensen
language: en
Publisher: Springer Science & Business Media
Release Date: 2007-03-22
This book, suitable for numerate biologists and for applied statisticians, provides the foundations of likelihood, Bayesian and MCMC methods in the context of genetic analysis of quantitative traits. Although a number of excellent texts in these areas have become available in recent years, the basic ideas and tools are typically described in a technically demanding style and contain much more detail than necessary. Here, an effort has been made to relate biological to statistical parameters throughout, and the book includes extensive examples that illustrate the developing argument.