Basic Principles Of Nanotechnology


Download Basic Principles Of Nanotechnology PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Basic Principles Of Nanotechnology book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Basic Principles of Nanotechnology


Basic Principles of Nanotechnology

Author: Wesley C. Sanders

language: en

Publisher: CRC Press

Release Date: 2018-07-11


DOWNLOAD





The book allows the reader to have a basic understanding of the structure and properties of nanoscale materials routinely used in nanotechnology-based research and industries. To add, the book describes the operation of nanoscale transistors and the processes used to fabricate the devices. Additionally, it presents research involving the use of carbon nanotubes, graphene, and molecules to create non-silicon based electronic devices. It aims to provide an understanding of the operation of the most frequently used fabrication and characterization procedures, such as scanning electron microscopy, atomic force microscopy, etch, e-beam lithography, and photolithography. Provides explanations of the common techniques used in nanofabrication. Focuses on nanomaterials that are almost exclusively used in academic research and incorporated in consumer materials, such as carbon nanotubes, graphene, metal nanoparticles, quantum dots, and conductive polymers. Each chapter begins with a list of key objectives describing major content covered. Includes end-of-chapter questions to reinforce chapter content.

Basic Principles of Nanotechnology


Basic Principles of Nanotechnology

Author: Wesley Sanders

language: en

Publisher: CRC Press

Release Date: 2018-07-11


DOWNLOAD





The book allows the reader to have a basic understanding of the structure and properties of nanoscale materials routinely used in nanotechnology-based research and industries. To add, the book describes the operation of nanoscale transistors and the processes used to fabricate the devices. Additionally, it presents research involving the use of carbon nanotubes, graphene, and molecules to create non-silicon based electronic devices. It aims to provide an understanding of the operation of the most frequently used fabrication and characterization procedures, such as scanning electron microscopy, atomic force microscopy, etch, e-beam lithography, and photolithography. Provides explanations of the common techniques used in nanofabrication. Focuses on nanomaterials that are almost exclusively used in academic research and incorporated in consumer materials, such as carbon nanotubes, graphene, metal nanoparticles, quantum dots, and conductive polymers. Each chapter begins with a list of key objectives describing major content covered. Includes end-of-chapter questions to reinforce chapter content.

Nanotechnology: Principles and Practices


Nanotechnology: Principles and Practices

Author: Sulabha K. Kulkarni

language: en

Publisher: Springer

Release Date: 2014-11-03


DOWNLOAD





Given the rapid advances in the field, this book offers an up-to-date introduction to nanomaterials and nanotechnology. Though condensed into a relatively small volume, it spans the whole range of multidisciplinary topics related to nanotechnology. Starting with the basic concepts of quantum mechanics and solid state physics, it presents both physical and chemical synthetic methods, as well as analytical techniques for studying nanostructures. The size-specific properties of nanomaterials, such as their thermal, mechanical, optical and magnetic characteristics, are discussed in detail. The book goes on to illustrate the various applications of nanomaterials in electronics, optoelectronics, cosmetics, energy, textiles and the medical field and discusses the environmental impact of these technologies. Many new areas, materials and effects are then introduced, including spintronics, soft lithography, metamaterials, the lotus effect, the Gecko effect and graphene. The book also explains the functional principles of essential techniques, such as scanning tunneling microscopy (STM), atomic force microscopy (AFM), scanning near field optical microscopy (SNOM), Raman spectroscopy and photoelectron microscopy. In closing, Chapter 14, ‘Practicals’, provides a helpful guide to setting up and conducting inexpensive nanotechnology experiments in teaching laboratories.