Basic Concepts Of X Ray Diffraction


Download Basic Concepts Of X Ray Diffraction PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Basic Concepts Of X Ray Diffraction book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Basic Concepts of X-Ray Diffraction


Basic Concepts of X-Ray Diffraction

Author: Emil Zolotoyabko

language: en

Publisher: John Wiley & Sons

Release Date: 2014-02-10


DOWNLOAD





Authored by a university professor deeply involved in X-ray diffraction-related research, this textbook is based on his lectures given to graduate students for more than 20 years. It adopts a well-balanced approach, describing basic concepts and experimental techniques, which make X-ray diffraction an unsurpassed method for studying the structure of materials. Both dynamical and kinematic X-ray diffraction is considered from a unified viewpoint, in which the dynamical diffraction in single-scattering approximation serves as a bridge between these two parts. The text emphasizes the fundamental laws that govern the interaction of X-rays with matter, but also covers in detail classical and modern applications, e.g., line broadening, texture and strain/stress analyses, X-ray mapping in reciprocal space, high-resolution X-ray diffraction in the spatial and wave vector domains, X-ray focusing, inelastic and time-resolved X-ray scattering. This unique scope, in combination with otherwise hard-to-find information on analytic expressions for simulating X-ray diffraction profiles in thin-film heterostructures, X-ray interaction with phonons, coherent scattering of Mossbauer radiation, and energy-variable X-ray diffraction, makes the book indispensable for any serious user of X-ray diffraction techniques. Compact and self-contained, this textbook is suitable for students taking X-ray diffraction courses towards specialization in materials science, physics, chemistry, or biology. Numerous clear-cut illustrations, an easy-to-read style of writing, as well as rather short, easily digestible chapters all facilitate comprehension.

Introduction to Basic Concepts for Engineers and Scientists


Introduction to Basic Concepts for Engineers and Scientists

Author: Nkoma, John S

language: en

Publisher: Mkuki na Nyota Publishers

Release Date: 2018-05-22


DOWNLOAD





Science and Technology are ubiquitous in the modern world as evidenced by digital lifestyles through mobile phones, computers, digital financial services, digital music, digital television, online newspapers, digital medical equipment and services including e-services (e-commerce, e-learning, e-health, e-government) and the internet. This book, Introduction to Basic concepts for Engineers and Scientists: Electromagnetic, Quantum, Statistical and Relativistic Concepts. is written with the objective of imparting basic concepts for engineering, physics, chemistry students or indeed other sciences, so that such students get an understanding as to what is behind all these modern advances in science and technology. The basic concepts covered in this book include electromagnetic, quantum, statistical and relativistic concepts, and are covered in 20 chapters. The choice of these concepts is not accidental, but deliberate so as to highlight the importance of these basic science concepts in modern engineering and technology. Electromagnetic concepts, are covered in chapters 1 to 6 with chapters 1 (Maxwell's equations), 2 (Electromagnetic waves at boundaries), 3 (Diffraction and Interference), 4 (Optical fiber communications), 5 (Satellite communications) and 6 (Mobile cellular communications). Quantum concepts are covered in chapters 7 to 15 with chapters 7 (Wave-particle duality), 8 (The wave function and solutions of the Schrodinger equation in different systems), 9 (Introduction to the structure of the atom), Introduction to materials science I, II, III and IV, in four chapters: 10 (I: Crystal structure), 11 (II: Phonons), 12 (III: Electrons) and 13 (IV: Magnetic materials), 14 (Semiconductor devices), and 15 (Quantum Optics). Statistical concepts are covered in chapters 16 to 19, with chapters 16 (Introduction to statistical mechanics), 17 (Statistical mechanics distribution functions, covering Maxwell-Boltzmann statistics, Fermi-Dirac statistics and Bose-Einstein statistics), 18 (Transport theory) and 19 (Phase transitions). Finally, chapter 20 (Relativity) where Galilean, Special and General Relativity are discussed.

Two-Dimensional X-Ray Diffraction


Two-Dimensional X-Ray Diffraction

Author: Bob B. He

language: en

Publisher: John Wiley & Sons

Release Date: 2011-09-20


DOWNLOAD





Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to researchers in materials science, chemistry, physics, and pharmaceuticals, as well as graduate-level students in these areas.