Automorphic Forms And Shimura Varieties Of Pgsp 2

Download Automorphic Forms And Shimura Varieties Of Pgsp 2 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Automorphic Forms And Shimura Varieties Of Pgsp 2 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Automorphic Forms and Shimura Varieties of PGSp (2)

The area of automorphic representations is a natural continuation of studies in the 19th and 20th centuries on number theory and modular forms. A guiding principle is a reciprocity law relating infinite dimensional automorphic representations with finite dimensional Galois representations. Simple relations on the Galois side reflect deep relations on the automorphic side, called ?liftings.' This in-depth book concentrates on an initial example of the lifting, from a rank 2 symplectic group PGSp(2) to PGL(4), reflecting the natural embedding of Sp(2,ó) in SL(4, ó). It develops the technique of comparing twisted and stabilized trace formulae. It gives a detailed classification of the automorphic and admissible representation of the rank two symplectic PGSp(2) by means of a definition of packets and quasi-packets, using character relations and trace formulae identities. It also shows multiplicity one and rigidity theorems for the discrete spectrum.Applications include the study of the decomposition of the cohomology of an associated Shimura variety, thereby linking Galois representations to geometric automorphic representations.To put these results in a general context, the book concludes with a technical introduction to Langlands' program in the area of automorphic representations. It includes a proof of known cases of Artin's conjecture.
Automorphic Representations of Low Rank Groups

The area of automorphic representations is a natural continuation of studies in number theory and modular forms. A guiding principle is a reciprocity law relating the infinite dimensional automorphic representations with finite dimensional Galois representations. Simple relations on the Galois side reflect deep relations on the automorphic side, called OC liftingsOCO. This book concentrates on two initial examples: the symmetric square lifting from SL(2) to PGL(3), reflecting the 3-dimensional representation of PGL(2) in SL(3); and basechange from the unitary group U(3, E/F) to GL(3, E), [E: F] = 2. The book develops the technique of comparison of twisted and stabilized trace formulae and considers the OC Fundamental LemmaOCO on orbital integrals of spherical functions. Comparison of trace formulae is simplified using OC regularOCO functions and the OC liftingOCO is stated and proved by means of character relations. This permits an intrinsic definition of partition of the automorphic representations of SL(2) into packets, and a definition of packets for U(3), a proof of multiplicity one theorem and rigidity theorem for SL(2) and for U(3), a determination of the self-contragredient representations of PGL(3) and those on GL(3, E) fixed by transpose-inverse-bar. In particular, the multiplicity one theorem is new and recent. There are applications to construction of Galois representations by explicit decomposition of the cohomology of Shimura varieties of U(3) using Deligne''s (proven) conjecture on the fixed point formula. Sample Chapter(s). Chapter 1: Functoriality and Norms (963 KB). Contents: On the Symmetric Square Lifting: Functoriality and Norms; Orbital Integrals; Twisted Trace Formula; Total Global Comparison; Applications of a Trace Formula; Computation of a Twisted Character; Automorphic Representations of the Unitary Group U(3, E/F): Local Theory; Trace Formula; Liftings and Packets; Zeta Functions of Shimura Varieties of U(3): Automorphic Representations; Local Terms; Real Representations; Galois Representations. Readership: Graduate students and researchers in number theory, algebra and representation theory."
Geometry of Moduli

Author: Jan Arthur Christophersen
language: en
Publisher: Springer
Release Date: 2018-11-24
The proceedings from the Abel Symposium on Geometry of Moduli, held at Svinøya Rorbuer, Svolvær in Lofoten, in August 2017, present both survey and research articles on the recent surge of developments in understanding moduli problems in algebraic geometry. Written by many of the main contributors to this evolving subject, the book provides a comprehensive collection of new methods and the various directions in which moduli theory is advancing. These include the geometry of moduli spaces, non-reductive geometric invariant theory, birational geometry, enumerative geometry, hyper-kähler geometry, syzygies of curves and Brill-Noether theory and stability conditions. Moduli theory is ubiquitous in algebraic geometry, and this is reflected in the list of moduli spaces addressed in this volume: sheaves on varieties, symmetric tensors, abelian differentials, (log) Calabi-Yau varieties, points on schemes, rational varieties, curves, abelian varieties and hyper-Kähler manifolds.