Automating Data Driven Modelling Of Dynamical Systems


Download Automating Data Driven Modelling Of Dynamical Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Automating Data Driven Modelling Of Dynamical Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Automating Data-Driven Modelling of Dynamical Systems


Automating Data-Driven Modelling of Dynamical Systems

Author: Dhruv Khandelwal

language: en

Publisher: Springer Nature

Release Date: 2022-02-03


DOWNLOAD





This book describes a user-friendly, evolutionary algorithms-based framework for estimating data-driven models for a wide class of dynamical systems, including linear and nonlinear ones. The methodology addresses the problem of automating the process of estimating data-driven models from a user’s perspective. By combining elementary building blocks, it learns the dynamic relations governing the system from data, giving model estimates with various trade-offs, e.g. between complexity and accuracy. The evaluation of the method on a set of academic, benchmark and real-word problems is reported in detail. Overall, the book offers a state-of-the-art review on the problem of nonlinear model estimation and automated model selection for dynamical systems, reporting on a significant scientific advance that will pave the way to increasing automation in system identification.

Data-driven Modelling and Scientific Machine Learning in Continuum Physics


Data-driven Modelling and Scientific Machine Learning in Continuum Physics

Author: Krishna Garikipati

language: en

Publisher: Springer Nature

Release Date: 2024-07-29


DOWNLOAD





This monograph takes the reader through recent advances in data-driven methods and machine learning for problems in science—specifically in continuum physics. It develops the foundations and details a number of scientific machine learning approaches to enrich current computational models of continuum physics, or to use the data generated by these models to infer more information on these problems. The perspective presented here is drawn from recent research by the author and collaborators. Applications drawn from the physics of materials or from biophysics illustrate each topic. Some elements of the theoretical background in continuum physics that are essential to address these applications are developed first. These chapters focus on nonlinear elasticity and mass transport, with particular attention directed at descriptions of phase separation. This is followed by a brief treatment of the finite element method, since it is the most widely used approach to solve coupled partial differential equations in continuum physics. With these foundations established, the treatment proceeds to a number of recent developments in data-driven methods and scientific machine learning in the context of the continuum physics of materials and biosystems. This part of the monograph begins by addressing numerical homogenization of microstructural response using feed-forward as well as convolutional neural networks. Next is surrogate optimization using multifidelity learning for problems of phase evolution. Graph theory bears many equivalences to partial differential equations in its properties of representation and avenues for analysis as well as reduced-order descriptions--all ideas that offer fruitful opportunities for exploration. Neural networks, by their capacity for representation of high-dimensional functions, are powerful for scale bridging in physics--an idea on which we present a particular perspective in the context of alloys. One of the most compelling ideas in scientific machine learning is the identification of governing equations from dynamical data--another topic that we explore from the viewpoint of partial differential equations encoding mechanisms. This is followed by an examination of approaches to replace traditional, discretization-based solvers of partial differential equations with deterministic and probabilistic neural networks that generalize across boundary value problems. The monograph closes with a brief outlook on current emerging ideas in scientific machine learning.

Automated Technology for Verification and Analysis


Automated Technology for Verification and Analysis

Author: Étienne André

language: en

Publisher: Springer Nature

Release Date: 2023-10-18


DOWNLOAD





This book constitutes the refereed proceedings of the 21st International Symposium on Automated Technology for Verification and Analysis, ATVA 2023, held in Singapore, in October 2023. The symposium intends to promote research in theoretical and practical aspects of automated analysis, verification and synthesis by providing a forum for interaction between regional and international research communities and industry in related areas. The 30 regular papers presented together with 7 tool papers were carefully reviewed and selected from 150 submissions.The papers are divided into the following topical sub-headings: Temporal logics, Data structures and heuristics, Verification of programs and hardware.