Automatic Laser Calibration Mapping And Localization For Autonomous Vehicles


Download Automatic Laser Calibration Mapping And Localization For Autonomous Vehicles PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Automatic Laser Calibration Mapping And Localization For Autonomous Vehicles book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Automatic Laser Calibration, Mapping, and Localization for Autonomous Vehicles


Automatic Laser Calibration, Mapping, and Localization for Autonomous Vehicles

Author: Jesse Sol Levinson

language: en

Publisher: Stanford University

Release Date: 2011


DOWNLOAD





This dissertation presents several related algorithms that enable important capabilities for self-driving vehicles. Using a rotating multi-beam laser rangefinder to sense the world, our vehicle scans millions of 3D points every second. Calibrating these sensors plays a crucial role in accurate perception, but manual calibration is unreasonably tedious, and generally inaccurate. As an alternative, we present an unsupervised algorithm for automatically calibrating both the intrinsics and extrinsics of the laser unit from only seconds of driving in an arbitrary and unknown environment. We show that the results are not only vastly easier to obtain than traditional calibration techniques, they are also more accurate. A second key challenge in autonomous navigation is reliable localization in the face of uncertainty. Using our calibrated sensors, we obtain high resolution infrared reflectivity readings of the world. From these, we build large-scale self-consistent probabilistic laser maps of urban scenes, and show that we can reliably localize a vehicle against these maps to within centimeters, even in dynamic environments, by fusing noisy GPS and IMU readings with the laser in realtime. We also present a localization algorithm that was used in the DARPA Urban Challenge, which operated without a prerecorded laser map, and allowed our vehicle to complete the entire six-hour course without a single localization failure. Finally, we present a collection of algorithms for the mapping and detection of traffic lights in realtime. These methods use a combination of computer-vision techniques and probabilistic approaches to incorporating uncertainty in order to allow our vehicle to reliably ascertain the state of traffic-light-controlled intersections.

Automatic Laser Calibration, Mapping, and Localization for Autonomous Vehicles


Automatic Laser Calibration, Mapping, and Localization for Autonomous Vehicles

Author: Jesse Sol Levinson

language: en

Publisher:

Release Date: 2011


DOWNLOAD





This dissertation presents several related algorithms that enable important capabilities for self-driving vehicles. Using a rotating multi-beam laser rangefinder to sense the world, our vehicle scans millions of 3D points every second. Calibrating these sensors plays a crucial role in accurate perception, but manual calibration is unreasonably tedious, and generally inaccurate. As an alternative, we present an unsupervised algorithm for automatically calibrating both the intrinsics and extrinsics of the laser unit from only seconds of driving in an arbitrary and unknown environment. We show that the results are not only vastly easier to obtain than traditional calibration techniques, they are also more accurate. A second key challenge in autonomous navigation is reliable localization in the face of uncertainty. Using our calibrated sensors, we obtain high resolution infrared reflectivity readings of the world. From these, we build large-scale self-consistent probabilistic laser maps of urban scenes, and show that we can reliably localize a vehicle against these maps to within centimeters, even in dynamic environments, by fusing noisy GPS and IMU readings with the laser in realtime. We also present a localization algorithm that was used in the DARPA Urban Challenge, which operated without a prerecorded laser map, and allowed our vehicle to complete the entire six-hour course without a single localization failure. Finally, we present a collection of algorithms for the mapping and detection of traffic lights in realtime. These methods use a combination of computer-vision techniques and probabilistic approaches to incorporating uncertainty in order to allow our vehicle to reliably ascertain the state of traffic-light-controlled intersections.

Engineering Autonomous Vehicles and Robots


Engineering Autonomous Vehicles and Robots

Author: Shaoshan Liu

language: en

Publisher: John Wiley & Sons

Release Date: 2020-05-11


DOWNLOAD





Offers a step-by-step guide to building autonomous vehicles and robots, with source code and accompanying videos The first book of its kind on the detailed steps for creating an autonomous vehicle or robot, this book provides an overview of the technology and introduction of the key elements involved in developing autonomous vehicles, and offers an excellent introduction to the basics for someone new to the topic of autonomous vehicles and the innovative, modular-based engineering approach called DragonFly. Engineering Autonomous Vehicles and Robots: The DragonFly Modular-based Approach covers everything that technical professionals need to know about: CAN bus, chassis, sonars, radars, GNSS, computer vision, localization, perception, motion planning, and more. Particularly, it covers Computer Vision for active perception and localization, as well as mapping and motion planning. The book offers several case studies on the building of an autonomous passenger pod, bus, and vending robot. It features a large amount of supplementary material, including the standard protocol and sample codes for chassis, sonar, and radar. GPSD protocol/NMEA protocol and GPS deployment methods are also provided. Most importantly, readers will learn the philosophy behind the DragonFly modular-based design approach, which empowers readers to design and build their own autonomous vehicles and robots with flexibility and affordability. Offers progressive guidance on building autonomous vehicles and robots Provides detailed steps and codes to create an autonomous machine, at affordable cost, and with a modular approach Written by one of the pioneers in the field building autonomous vehicles Includes case studies, source code, and state-of-the art research results Accompanied by a website with supplementary material, including sample code for chassis/sonar/radar; GPS deployment methods; Vision Calibration methods Engineering Autonomous Vehicles and Robots is an excellent book for students, researchers, and practitioners in the field of autonomous vehicles and robots.