Automatic Generation Of Neural Network Architecture Using Evolutionary Computation

Download Automatic Generation Of Neural Network Architecture Using Evolutionary Computation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Automatic Generation Of Neural Network Architecture Using Evolutionary Computation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Automatic Generation of Neural Network Architecture Using Evolutionary Computation

This book describes the application of evolutionary computation in the automatic generation of a neural network architecture. The architecture has a significant influence on the performance of the neural network. It is the usual practice to use trial and error to find a suitable neural network architecture for a given problem. The process of trial and error is not only time-consuming but may not generate an optimal network. The use of evolutionary computation is a step towards automation in neural network architecture generation.An overview of the field of evolutionary computation is presented, together with the biological background from which the field was inspired. The most commonly used approaches to a mathematical foundation of the field of genetic algorithms are given, as well as an overview of the hybridization between evolutionary computation and neural networks. Experiments on the implementation of automatic neural network generation using genetic programming and one using genetic algorithms are described, and the efficacy of genetic algorithms as a learning algorithm for a feedforward neural network is also investigated.
Automatic Generation Of Neural Network Architecture Using Evolutionary Computation

This book describes the application of evolutionary computation in the automatic generation of a neural network architecture. The architecture has a significant influence on the performance of the neural network. It is the usual practice to use trial and error to find a suitable neural network architecture for a given problem. The process of trial and error is not only time-consuming but may not generate an optimal network. The use of evolutionary computation is a step towards automation in neural network architecture generation.An overview of the field of evolutionary computation is presented, together with the biological background from which the field was inspired. The most commonly used approaches to a mathematical foundation of the field of genetic algorithms are given, as well as an overview of the hybridization between evolutionary computation and neural networks. Experiments on the implementation of automatic neural network generation using genetic programming and one using genetic algorithms are described, and the efficacy of genetic algorithms as a learning algorithm for a feedforward neural network is also investigated.
Advances in Evolutionary Computing for System Design

Evolutionary computing paradigms offer robust and powerful adaptive search mechanisms for system design. This book’s thirteen chapters cover a wide area of topics in evolutionary computing and applications, including an introduction to evolutionary computing in system design; evolutionary neuro-fuzzy systems; and evolution of fuzzy controllers. The book will be useful to researchers in intelligent systems with interest in evolutionary computing, as well as application engineers and system designers.