Automated Machine Learning Tools


Download Automated Machine Learning Tools PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Automated Machine Learning Tools book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Automated Machine Learning


Automated Machine Learning

Author: Frank Hutter

language: en

Publisher: Springer

Release Date: 2019-05-17


DOWNLOAD





This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.

Mastering Automated Machine Learning: Concepts, Tools, and Techniques


Mastering Automated Machine Learning: Concepts, Tools, and Techniques

Author: Peter Jones

language: en

Publisher: Walzone Press

Release Date: 2025-01-17


DOWNLOAD





"Mastering Automated Machine Learning: Concepts, Tools, and Techniques" is an essential guide for anyone seeking to unlock the full potential of Automated Machine Learning (AutoML), a groundbreaking technology transforming the field of data science. By automating complex and time-consuming processes, AutoML is making machine learning more efficient and accessible to a broader range of professionals. This book offers an in-depth exploration of core principles, state-of-the-art methodologies, and the practical tools that define AutoML. From data preparation and feature engineering to model selection, tuning, and deployment, readers will acquire a thorough understanding of how AutoML streamlines the entire machine learning pipeline. Whether you're a data scientist, machine learning engineer, or software developer eager to harness the power of automation, "Mastering Automated Machine Learning" provides the insights you need to implement cutting-edge AutoML solutions. With practical examples and guidance on using Python-based frameworks, this book equips you to revolutionize your data science projects. Embrace the future of machine learning and optimize your workflows with "Mastering Automated Machine Learning: Concepts, Tools, and Techniques."

Automated Machine Learning


Automated Machine Learning

Author: Adnan Masood

language: en

Publisher: Packt Publishing

Release Date: 2021-02-18


DOWNLOAD





Get to grips with automated machine learning and adopt a hands-on approach to AutoML implementation and associated methodologies Key Features: Get up to speed with AutoML using OSS, Azure, AWS, GCP, or any platform of your choice Eliminate mundane tasks in data engineering and reduce human errors in machine learning models Find out how you can make machine learning accessible for all users to promote decentralized processes Book Description: Every machine learning engineer deals with systems that have hyperparameters, and the most basic task in automated machine learning (AutoML) is to automatically set these hyperparameters to optimize performance. The latest deep neural networks have a wide range of hyperparameters for their architecture, regularization, and optimization, which can be customized effectively to save time and effort. This book reviews the underlying techniques of automated feature engineering, model and hyperparameter tuning, gradient-based approaches, and much more. You'll discover different ways of implementing these techniques in open source tools and then learn to use enterprise tools for implementing AutoML in three major cloud service providers: Microsoft Azure, Amazon Web Services (AWS), and Google Cloud Platform. As you progress, you'll explore the features of cloud AutoML platforms by building machine learning models using AutoML. The book will also show you how to develop accurate models by automating time-consuming and repetitive tasks in the machine learning development lifecycle. By the end of this machine learning book, you'll be able to build and deploy AutoML models that are not only accurate, but also increase productivity, allow interoperability, and minimize feature engineering tasks. What You Will Learn: Explore AutoML fundamentals, underlying methods, and techniques Assess AutoML aspects such as algorithm selection, auto featurization, and hyperparameter tuning in an applied scenario Find out the difference between cloud and operations support systems (OSS) Implement AutoML in enterprise cloud to deploy ML models and pipelines Build explainable AutoML pipelines with transparency Understand automated feature engineering and time series forecasting Automate data science modeling tasks to implement ML solutions easily and focus on more complex problems Who this book is for: Citizen data scientists, machine learning developers, artificial intelligence enthusiasts, or anyone looking to automatically build machine learning models using the features offered by open source tools, Microsoft Azure Machine Learning, AWS, and Google Cloud Platform will find this book useful. Beginner-level knowledge of building ML models is required to get the best out of this book. Prior experience in using Enterprise cloud is beneficial.