Atomistic Simulation Of Anistropic Crystal Structures At Nanoscale

Download Atomistic Simulation Of Anistropic Crystal Structures At Nanoscale PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Atomistic Simulation Of Anistropic Crystal Structures At Nanoscale book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Atomistic Simulation of Anistropic Crystal Structures at Nanoscale

Multiscale simulations of atomistic/continuum coupling in computational materials science, where the scale expands from macro-/micro- to nanoscale, has become a hot research topic. These small units, usually nanostructures, are commonly anisotropic. The development of molecular modeling tools to describe and predict the mechanical properties of structures reveals an undeniable practical importance. Typical anisotropic structures (e.g. cubic, hexagonal, monoclinic) using DFT, MD, and atomic finite element methods are especially interesting, according to the modeling requirement of upscaling structures. It therefore connects nanoscale modeling and continuous patterns of deformation behavior by identifying relevant parameters from smaller to larger scales. These methodologies have the prospect of significant applications. I would like to recommend this book to both beginners and experienced researchers.
Anisotropic and Shape-Selective Nanomaterials

This book reviews recent advances in the synthesis, characterization, and physico-chemical properties of anisotropic nanomaterials. It highlights various emerging applications of nanomaterials, including sensing and imaging, (bio)medical applications, environmental protection, plasmonics, catalysis, and energy. It provides an excellent and comprehensive overview of the effect that morphology and nanometric dimension has on the physico-chemical properties of various materials and how this leads to novel applications.
Anisotropic Particle Assemblies

Anisotropic Particle Assemblies: Synthesis, Assembly, Modeling, and Applications covers the synthesis, assembly, modeling, and applications of various types of anisotropic particles. Topics such as chemical synthesis and scalable fabrication of colloidal molecules, molecular mimetic self-assembly, directed assembly under external fields, theoretical and numerical multi-scale modeling, anisotropic materials with novel interfacial properties, and the applications of these topics in renewable energy, intelligent micro-machines, and biomedical fields are discussed in depth. Contributors to this book are internationally known experts who have been actively studying each of these subfields for many years.This book is an invaluable reference for researchers and chemical engineers who are working at the intersection of physics, chemistry, chemical engineering, and materials science and engineering. It educates students, trains the next generation of researchers, and stimulates continuous development in this rapidly emerging area for new materials and innovative technologies. - Provides comprehensive coverage on new developments in anisotropic particles - Features chapters written by emerging and leading experts in each of the subfields - Contains information that will appeal to a broad spectrum of professionals, including but not limited to chemical engineers, chemists, physicists, and materials scientists and engineers - Serves as both a reference book for researchers and a textbook for graduate students