Asymptotics Of Linear Differential Equations

Download Asymptotics Of Linear Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Asymptotics Of Linear Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Asymptotics of Linear Differential Equations

Author: M.H. Lantsman
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-04-17
The asymptotic theory deals with the problern of determining the behaviour of a function in a neighborhood of its singular point. The function is replaced by another known function ( named the asymptotic function) close (in a sense) to the function under consideration. Many problems of mathematics, physics, and other divisions of natural sci ence bring out the necessity of solving such problems. At the present time asymptotic theory has become an important and independent branch of mathematical analysis. The present consideration is mainly based on the theory of asymp totic spaces. Each asymptotic space is a collection of asymptotics united by an associated real function which determines their growth near the given point and (perhaps) some other analytic properties. The main contents of this book is the asymptotic theory of ordinary linear differential equations with variable coefficients. The equations with power order growth coefficients are considered in detail. As the application of the theory of differential asymptotic fields, we also consider the following asymptotic problems: the behaviour of explicit and implicit functions, improper integrals, integrals dependent on a large parameter, linear differential and difference equations, etc .. The obtained results have an independent meaning. The reader is assumed to be familiar with a comprehensive course of the mathematical analysis studied, for instance at mathematical departments of universities. Further necessary information is given in this book in summarized form with proofs of the main aspects.
Asymptotic Analysis

Author: Mikhail V. Fedoryuk
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
In this book we present the main results on the asymptotic theory of ordinary linear differential equations and systems where there is a small parameter in the higher derivatives. We are concerned with the behaviour of solutions with respect to the parameter and for large values of the independent variable. The literature on this question is considerable and widely dispersed, but the methods of proofs are sufficiently similar for this material to be put together as a reference book. We have restricted ourselves to homogeneous equations. The asymptotic behaviour of an inhomogeneous equation can be obtained from the asymptotic behaviour of the corresponding fundamental system of solutions by applying methods for deriving asymptotic bounds on the relevant integrals. We systematically use the concept of an asymptotic expansion, details of which can if necessary be found in [Wasow 2, Olver 6]. By the "formal asymptotic solution" (F.A.S.) is understood a function which satisfies the equation to some degree of accuracy. Although this concept is not precisely defined, its meaning is always clear from the context. We also note that the term "Stokes line" used in the book is equivalent to the term "anti-Stokes line" employed in the physics literature.