Asymptotic Theory Of Weakly Dependent Random Processes

Download Asymptotic Theory Of Weakly Dependent Random Processes PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Asymptotic Theory Of Weakly Dependent Random Processes book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Asymptotic Theory of Weakly Dependent Random Processes

Ces notes sont consacrées aux inégalités et aux théorèmes limites classiques pour les suites de variables aléatoires absolument régulières ou fortement mélangeantes au sens de Rosenblatt. Le but poursuivi est de donner des outils techniques pour l'étude des processus faiblement dépendants aux statisticiens ou aux probabilistes travaillant sur ces processus.
Asymptotic Theory of Statistics and Probability

Author: Anirban DasGupta
language: en
Publisher: Springer Science & Business Media
Release Date: 2008-03-07
This unique book delivers an encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools. The book is unique in its detailed coverage of fundamental topics. It is written in an extremely lucid style, with an emphasis on the conceptual discussion of the importance of a problem and the impact and relevance of the theorems. There is no other book in large sample theory that matches this book in coverage, exercises and examples, bibliography, and lucid conceptual discussion of issues and theorems.
Extreme Value Theory for Time Series

This book deals with extreme value theory for univariate and multivariate time series models characterized by power-law tails. These include the classical ARMA models with heavy-tailed noise and financial econometrics models such as the GARCH and stochastic volatility models. Rigorous descriptions of power-law tails are provided through the concept of regular variation. Several chapters are devoted to the exploration of regularly varying structures. The remaining chapters focus on the impact of heavy tails on time series, including the study of extremal cluster phenomena through point process techniques. A major part of the book investigates how extremal dependence alters the limit structure of sample means, maxima, order statistics, sample autocorrelations. This text illuminates the theory through hundreds of examples and as many graphs showcasing its applications to real-life financial and simulated data. The book can serve as a text for PhD and Master courses on applied probability, extreme value theory, and time series analysis. It is a unique reference source for the heavy-tail modeler. Its reference quality is enhanced by an exhaustive bibliography, annotated by notes and comments making the book broadly and easily accessible.