Asymptotic Optimality Theory For Testing Problems With Restrict

Download Asymptotic Optimality Theory For Testing Problems With Restrict PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Asymptotic Optimality Theory For Testing Problems With Restrict book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Testing Problems with Linear or Angular Inequality Constraints

Author: Johan C. Akkerboom
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Represents a self-contained account of a new promising and generally applicable approach to a large class of one-sided testing problems, where the alternative is restricted by at least two linear inequalities. It highlights the geometrical structure of these problems. It gives guidance in the construction of a so-called Circular Likelihood Ratio (CLR) test, which is obtained if the linear inequalities, or polyhedral cone, are replaced by one suitable angular inequality, or circular cone. Such a test will often constitute a nice and easy-to-use compromise between the LR-test and a suitable linear test against the original alternative. The book treats both theory and practice of CLR-tests. For cases with up to 13 linear inequalities, it evaluates the power of CLR-tests, derives the most stringent CLR-test, and provides tables of critical values. It is of interest both to the specialist in order- restricted inference and to the statistical consultant in need of simple and powerful one-sided tests. Many examples are worked out for ANOVA, goodness-of-fit, and contingency table problems. Case studies are devoted to Mokken's one- dimensional scaling model, one-sided treatment comparison in a two-period crossover trial, and some real data ANOVA- layouts (biology and educational psychology).
Constrained Statistical Inference

Author: Mervyn J. Silvapulle
language: en
Publisher: John Wiley & Sons
Release Date: 2011-09-15
An up-to-date approach to understanding statistical inference Statistical inference is finding useful applications in numerous fields, from sociology and econometrics to biostatistics. This volume enables professionals in these and related fields to master the concepts of statistical inference under inequality constraints and to apply the theory to problems in a variety of areas. Constrained Statistical Inference: Order, Inequality, and Shape Constraints provides a unified and up-to-date treatment of the methodology. It clearly illustrates concepts with practical examples from a variety of fields, focusing on sociology, econometrics, and biostatistics. The authors also discuss a broad range of other inequality-constrained inference problems that do not fit well in the contemplated unified framework, providing a meaningful way for readers to comprehend methodological resolutions. Chapter coverage includes: Population means and isotonic regression Inequality-constrained tests on normal means Tests in general parametric models Likelihood and alternatives Analysis of categorical data Inference on monotone density function, unimodal density function, shape constraints, and DMRL functions Bayesian perspectives, including Stein’s Paradox, shrinkage estimation, and decision theory