Asymptotic Methods In Mechanics Of Solids


Download Asymptotic Methods In Mechanics Of Solids PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Asymptotic Methods In Mechanics Of Solids book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Asymptotic methods in mechanics of solids


Asymptotic methods in mechanics of solids

Author: Svetlana M. Bauer

language: en

Publisher: Birkhäuser

Release Date: 2015-05-30


DOWNLOAD





The construction of solutions of singularly perturbed systems of equations and boundary value problems that are characteristic for the mechanics of thin-walled structures are the main focus of the book. The theoretical results are supplemented by the analysis of problems and exercises. Some of the topics are rarely discussed in the textbooks, for example, the Newton polyhedron, which is a generalization of the Newton polygon for equations with two or more parameters. After introducing the important concept of the index of variation for functions special attention is devoted to eigenvalue problems containing a small parameter. The main part of the book deals with methods of asymptotic solutions of linear singularly perturbed boundary and boundary value problems without or with turning points, respectively. As examples, one-dimensional equilibrium, dynamics and stability problems for rigid bodies and solids are presented in detail. Numerous exercises and examples as well as vast references to the relevant Russian literature not well known for an English speaking reader makes this a indispensable textbook on the topic.

Applied Asymptotic Methods in Nonlinear Oscillations


Applied Asymptotic Methods in Nonlinear Oscillations

Author: Yuri A. Mitropolsky

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-03-09


DOWNLOAD





Many dynamical systems are described by differential equations that can be separated into one part, containing linear terms with constant coefficients, and a second part, relatively small compared with the first, containing nonlinear terms. Such a system is said to be weakly nonlinear. The small terms rendering the system nonlinear are referred to as perturbations. A weakly nonlinear system is called quasi-linear and is governed by quasi-linear differential equations. We will be interested in systems that reduce to harmonic oscillators in the absence of perturbations. This book is devoted primarily to applied asymptotic methods in nonlinear oscillations which are associated with the names of N. M. Krylov, N. N. Bogoli ubov and Yu. A. Mitropolskii. The advantages of the present methods are their simplicity, especially for computing higher approximations, and their applicability to a large class of quasi-linear problems. In this book, we confine ourselves basi cally to the scheme proposed by Krylov, Bogoliubov as stated in the monographs [6,211. We use these methods, and also develop and improve them for solving new problems and new classes of nonlinear differential equations. Although these methods have many applications in Mechanics, Physics and Technique, we will illustrate them only with examples which clearly show their strength and which are themselves of great interest. A certain amount of more advanced material has also been included, making the book suitable for a senior elective or a beginning graduate course on nonlinear oscillations.

Asymptotic Methods in Mechanics


Asymptotic Methods in Mechanics

Author: RŽmi Vaillancourt

language: en

Publisher: American Mathematical Soc.

Release Date: 1993-12-21


DOWNLOAD





Asymptotic methods constitute an important area of both pure and applied mathematics and have applications to a vast array of problems. This collection of papers is devoted to asymptotic methods applied to mechanical problems, primarily thin structure problems. The first section presents a survey of asymptotic methods and a review of the literature, including the considerable body of Russian works in this area. This part may be used as a reference book or as a textbook for advanced undergraduate or graduate students in mathematics or engineering. The second part presents original papers containing new results. Among the key features of the book are its analysis of the general theory of asymptotic integration with applications to the theory of thin shells and plates, and new results about the local forms of vibrations and buckling of thin shells which have not yet made their way into other monographs on this subject.