Asymptotic Integration And Stability For Ordinary Functional And Discrete Differential Equations Of Fractional Order

Download Asymptotic Integration And Stability For Ordinary Functional And Discrete Differential Equations Of Fractional Order PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Asymptotic Integration And Stability For Ordinary Functional And Discrete Differential Equations Of Fractional Order book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Asymptotic Integration And Stability: For Ordinary, Functional And Discrete Differential Equations Of Fractional Order

This volume presents several important and recent contributions to the emerging field of fractional differential equations in a self-contained manner. It deals with new results on existence, uniqueness and multiplicity, smoothness, asymptotic development, and stability of solutions. The new topics in the field of fractional calculus include also the Mittag-Leffler and Razumikhin stability, stability of a class of discrete fractional non-autonomous systems, asymptotic integration with a priori given coefficients, intervals of disconjugacy (non-oscillation), existence of Lp solutions for various linear, and nonlinear fractional differential equations.
Basic Theory

Author: Anatoly Kochubei
language: en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date: 2019-02-19
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This first volume collects authoritative chapters covering the mathematical theory of fractional calculus, including fractional-order operators, integral transforms and equations, special functions, calculus of variations, and probabilistic and other aspects.
Fractional Calculus: Models And Numerical Methods (Second Edition)

This book will give readers the possibility of finding very important mathematical tools for working with fractional models and solving fractional differential equations, such as a generalization of Stirling numbers in the framework of fractional calculus and a set of efficient numerical methods. Moreover, we will introduce some applied topics, in particular fractional variational methods which are used in physics, engineering or economics. We will also discuss the relationship between semi-Markov continuous-time random walks and the space-time fractional diffusion equation, which generalizes the usual theory relating random walks to the diffusion equation. These methods can be applied in finance, to model tick-by-tick (log)-price fluctuations, in insurance theory, to study ruin, as well as in macroeconomics as prototypical growth models.All these topics are complementary to what is dealt with in existing books on fractional calculus and its applications. This book will keep in mind the trade-off between full mathematical rigor and the needs of readers coming from different applied areas of science and engineering. In particular, the numerical methods listed in the book are presented in a readily accessible way that immediately allows the readers to implement them on a computer in a programming language of their choice.The second edition of the book has been expanded and now includes a discussion of additional, newly developed numerical methods for fractional calculus and a chapter on the application of fractional calculus for modeling processes in the life sciences.