Asymptotic Analysis And Boundary Layers

Download Asymptotic Analysis And Boundary Layers PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Asymptotic Analysis And Boundary Layers book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Asymptotic Analysis and Boundary Layers

Author: Jean Cousteix
language: en
Publisher: Springer Science & Business Media
Release Date: 2007-03-22
This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows.
Asymptotic Analysis

In this chapter the authors discuss the asymptotic approximation of functions that display boundary-layer behavior. The purpose here is to introduce the basic concepts underlying the phenomenon, to illustrate its importance, and to describe some of the fundamental tools available for its analysis. To achieve their purpose in the clearest way possible, the authors will work with functions that are assumed to be given explicitly -- that is, functions f : (0, [epsilon]0) 2!X whose expressions are known, at least in principle. Only in the following chapter will they begin the study of functions that are given implicitly as solutions of boundary value problems -- the real stuff of which singular perturbation theory is made. Boundary-layer behavior is associated with asymptotic expansions that are regular {open_quotes}almost everywhere{close_quotes} -- that is, expansions that are regular on every compact subset of the domain of definition, but not near the boundary. These regular asymptotic expansions can be continued in a certain sense all the way up to the boundary, but a separate analysis is still necessary in the boundary layer. The boundary-layer analysis is purely local and aims at constructing local approximations in the neighborhood of each point of the singular part of the boundary. The problem of finding an asymptotic approximation is thus reduced to matching the various local approximations to the existing regular expansion valid in the interior of the domain. The authors are thinking, for example, of fluid flow (viscosity), combustion (Lewis number), and superconductivity (Ginzburg-Landau parameter) problems. Their solution may remain smooth over a wide range of parameter values, but as the parameters approach critical values, complicated patterns may emerge.