Assortment Optimization Under The Multivariate Mnl Model

Download Assortment Optimization Under The Multivariate Mnl Model PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Assortment Optimization Under The Multivariate Mnl Model book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Assortment Optimization Under the Multivariate MNL Model

We study an assortment optimization problem under a multi-purchase choice model in which customers choose a bundle of up to one product from each of two product categories. Different bundles have different utilities and the bundle price is the summation of the prices of products in it. For the uncapacitated setting where any set of products can be offered, we prove that this problem is strongly NP-hard. We show that an adjusted-revenue-ordered assortment provides a 1/2-approximation. Furthermore, we develop an approximation framework based on a linear programming relaxation of the problem and obtain a 0.74-approximation algorithm. This approximation ratio almost matches the integrality gap of the linear program, which is proven to be at most 0.75. For the capacitated setting, we prove that there does not exist a constant-factor approximation algorithm assuming the Exponential Time Hypothesis. The same hardness result holds for settings with general bundle prices or more than two categories. Finally, we conduct numerical experiments on randomly generated problem instances. The average approximation ratios of our algorithms are over 99%.
An Algorithm for Assortment Optimization Under Parametric Discrete Choice Models

This work concerns the assortment optimization problem that refers to selecting a subset of items that maximizes the expected revenue in the presence of the substitution behavior of consumers specified by a parametric choice model. The key challenge lies in the computational difficulty of finding the best subset solution, which often requires exhaustive search. The literature on constrained assortment optimization lacks a practically efficient method which that is general to deal with different types of parametric choice models (e.g., the multinomial logit, mixed logit or general multivariate extreme value models). In this paper, we propose a new approach that allows to address this issue. The idea is that, under a general parametric choice model, we formulate the problem into a binary nonlinear programming model, and use an iterative algorithm to find a binary solution. At each iteration, we propose a way to approximate the objective (expected revenue) by a linear function, and a polynomial-time algorithm to find a candidate solution using this approximate function. We also develop a greedy local search algorithm to further improve the solutions. We test our algorithm on instances of different sizes under various parametric choice model structures and show that our algorithm dominates existing exact and heuristic approaches in the literature, in terms of solution quality and computing cost.
Assortment Optimization Under the Multinomial Logit Model with Utility-Based Rank Cutoffs

We study assortment optimization problems under a natural variant of the multinomial logit model where the customers are willing to focus only on a certain number of products that provide the largest utilities. In particular, each customer has a rank cutoff, characterizing the number of products that she will focus on during the course of her choice process. Given that we offer a certain assortment of products, the choice process of a customer with rank cutoff k proceeds as follows. The customer associates random utilities with all of the products as well as the no-purchase option. She ignores all alternatives whose utilities are not within the k largest utilities. Among the remaining alternatives, the customer chooses the available alternative that provides the largest utility. Under the assumption that the~utilities follow Gumbel distributions with the same scale parameter, we provide a recursion to compute the choice probabilities. Considering the assortment optimization problem to find the revenue-maximizing assortment of products to offer, we show that the problem is NP-hard and give a polynomial-time approximation scheme. Since the customers ignore the products below their rank cutoffs in our variant of the multinomial logit model, intuitively speaking, our variant captures choosier choice behavior than the standard multinomial logit model. Accordingly, we show that the revenue-maximizing assortment under our variant includes the revenue-maximizing assortment under the standard multinomial logit model, so choosier behavior leads to larger assortments offered to maximize the expected revenue. We conduct computational experiments on both synthetic and real datasets to demonstrate that incorporating rank cutoffs can yield better predictions of customer choices and yield more profitable assortment recommendations.